In order to fulfill the goal of autonomous walking on rough terrain,a distributed gait planningmethod applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait co-ordination mecha...In order to fulfill the goal of autonomous walking on rough terrain,a distributed gait planningmethod applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait co-ordination mechanism of stick insect.The mathematical relation of walking velocity and gait pattern wasdepicted,a set of local rules operating between adjacent legs were put forward,and a distributed networkof local rules for gait control was constructed.With the interaction of adjacent legs,adaptive adjustmentof phase sequence fluctuation of walking legs resulting from change of terrain conditions or variety of walk-ing speed was implemented to generate statically stable gait.In the simulation experiments,adaptive ad-justment of inter-leg phase sequence and smooth transition of velocity and gait pattern were realized,andstatic stableness was ensured simultaneously,which provided the hexapod robot with the capability ofwalking on rough terrain stably and expeditiously.展开更多
The purpose of this paper is to present and evaluate a method of free gait generation for HITCRI,a hexapod walking robot.The HITCR-I is designed as a modularized structure of legs that is based upon a four-bar linkage...The purpose of this paper is to present and evaluate a method of free gait generation for HITCRI,a hexapod walking robot.The HITCR-I is designed as a modularized structure of legs that is based upon a four-bar linkage mechanism and with force sensors in the tip of legs,distributed hardware structure and a modular software structure of the control system.Based on a set of local rules between adjacent legs,finite state machine(FSM) model is built to control the coordination of legs.An automatic smooth transition of gait pattern is achieved through deriving the mathematical relation between gait pattern and locomotion parameters.The disordered inter-leg phase sequence is adjusted to a regular state smoothly and quickly by the local rules based FSM,and the gait pattern can transform automatically adapting to irregular terrain.The experiment on HITCR-I has demonstrated that it can walk through irregular terrain reliably and expeditiously with the free gait controller designed in this paper.展开更多
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z245)by the Progran for Changjiang Scholars and Innovative Research Team in University of China (PCSIRT) (IRT0423)
文摘In order to fulfill the goal of autonomous walking on rough terrain,a distributed gait planningmethod applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait co-ordination mechanism of stick insect.The mathematical relation of walking velocity and gait pattern wasdepicted,a set of local rules operating between adjacent legs were put forward,and a distributed networkof local rules for gait control was constructed.With the interaction of adjacent legs,adaptive adjustmentof phase sequence fluctuation of walking legs resulting from change of terrain conditions or variety of walk-ing speed was implemented to generate statically stable gait.In the simulation experiments,adaptive ad-justment of inter-leg phase sequence and smooth transition of velocity and gait pattern were realized,andstatic stableness was ensured simultaneously,which provided the hexapod robot with the capability ofwalking on rough terrain stably and expeditiously.
基金Supported by the National High Technology Research and Development Programme of China(No.2007AA041550)the National NaturalScience Foundation of China(No.51105101)
文摘The purpose of this paper is to present and evaluate a method of free gait generation for HITCRI,a hexapod walking robot.The HITCR-I is designed as a modularized structure of legs that is based upon a four-bar linkage mechanism and with force sensors in the tip of legs,distributed hardware structure and a modular software structure of the control system.Based on a set of local rules between adjacent legs,finite state machine(FSM) model is built to control the coordination of legs.An automatic smooth transition of gait pattern is achieved through deriving the mathematical relation between gait pattern and locomotion parameters.The disordered inter-leg phase sequence is adjusted to a regular state smoothly and quickly by the local rules based FSM,and the gait pattern can transform automatically adapting to irregular terrain.The experiment on HITCR-I has demonstrated that it can walk through irregular terrain reliably and expeditiously with the free gait controller designed in this paper.