[Objective] This study aimed to investigate the effect of chromium on ox- idative damage and antioxidant capacity of Ctenopharyngodon idellus (grass carp). [Method] The grass carps were treated with hexavalent chrom...[Objective] This study aimed to investigate the effect of chromium on ox- idative damage and antioxidant capacity of Ctenopharyngodon idellus (grass carp). [Method] The grass carps were treated with hexavalent chromium (Cr^6+) solution at concentrations of 0, 7.23, 14.47, 28.94 mg/L, and then the content of malondialde- hyde (MDA), the level of total antioxidative capacity (T-AOC) and the activity of gtu- tathione-S-transferase (GST) in the hepatopancreas of grass carp were determined after 96 hours in different treatment groups. [Result] The content of MDA presented increasing trend with the increase of exposure Cr^6+ concentrations. The activity of T-AOC increased firstly, then decreased with the increasing Cr^6+ exposure concentra- tions, showing that the level of T-AOC was induced in tow and medium concentrat ions (7.23 and 14.47 mg/L), but inhibited in high concentrations (28.94 mg/L). Among the exposure groups, the level of T-AOC in medium concentration group (14.47 mg/L) was significantly higher than the control (P〈0.05). Except the low concentration groups (7.23 mg/L) of which the GST activity was slightly induced, the GST activities of the other groups all showed downward trend with increasing Cr^6+ levels, and the activity of GST in 28.94 mg/L group was significantly lower than the control group (P〈0.05). [Conclusion] Cr^6+ could cause large oxidative damage in the hepatopancreas of grass carp, thus poisoning it, and Cr^6+ may further damage the organizational structure and physiological function of grass carp.展开更多
基金Supported by the National Program on Key Basic Research Project(2010CB134405)the Foundation for Doctors of Southwest University(SWU10903)the Project of China Three Gorges Corporation(CT-11-08-01)~~
文摘[Objective] This study aimed to investigate the effect of chromium on ox- idative damage and antioxidant capacity of Ctenopharyngodon idellus (grass carp). [Method] The grass carps were treated with hexavalent chromium (Cr^6+) solution at concentrations of 0, 7.23, 14.47, 28.94 mg/L, and then the content of malondialde- hyde (MDA), the level of total antioxidative capacity (T-AOC) and the activity of gtu- tathione-S-transferase (GST) in the hepatopancreas of grass carp were determined after 96 hours in different treatment groups. [Result] The content of MDA presented increasing trend with the increase of exposure Cr^6+ concentrations. The activity of T-AOC increased firstly, then decreased with the increasing Cr^6+ exposure concentra- tions, showing that the level of T-AOC was induced in tow and medium concentrat ions (7.23 and 14.47 mg/L), but inhibited in high concentrations (28.94 mg/L). Among the exposure groups, the level of T-AOC in medium concentration group (14.47 mg/L) was significantly higher than the control (P〈0.05). Except the low concentration groups (7.23 mg/L) of which the GST activity was slightly induced, the GST activities of the other groups all showed downward trend with increasing Cr^6+ levels, and the activity of GST in 28.94 mg/L group was significantly lower than the control group (P〈0.05). [Conclusion] Cr^6+ could cause large oxidative damage in the hepatopancreas of grass carp, thus poisoning it, and Cr^6+ may further damage the organizational structure and physiological function of grass carp.