A multicast replication algorithm is proposed for shared memory switches. It uses a dedicated FIFO to multicast by replicating cells at receiver and the FIFO is operating with shared memory in parallel. Speedup is use...A multicast replication algorithm is proposed for shared memory switches. It uses a dedicated FIFO to multicast by replicating cells at receiver and the FIFO is operating with shared memory in parallel. Speedup is used to promote loss and delay performance. A new queueing analytical model is developed based on a sub-timeslot approach. The system performance in terms of cell loss and delay is analyzed and verified by simulation.展开更多
Shared Memory (SM) switches are widely used for its high throughput, low delay and efficient use of memory. This paper compares the performance of two prominent switching schemes of SM packet switches: Cell-Based Swit...Shared Memory (SM) switches are widely used for its high throughput, low delay and efficient use of memory. This paper compares the performance of two prominent switching schemes of SM packet switches: Cell-Based Switching (CBS) and Packet-Based Switching (PBS).Theoretical analysis is carried out to draw qualitative conclusion on the memory requirement,throughput and packet delay of the two schemes. Furthermore, simulations are carried out to get quantitative results of the performance comparison under various system load, traffic patterns,and memory sizes. Simulation results show that PBS has the advantage of shorter time delay while CBS has lower memory requirement and outperforms in throughput when the memory size is limited. The comparison can be used for tradeoff between performance and complexity in switch design.展开更多
文摘A multicast replication algorithm is proposed for shared memory switches. It uses a dedicated FIFO to multicast by replicating cells at receiver and the FIFO is operating with shared memory in parallel. Speedup is used to promote loss and delay performance. A new queueing analytical model is developed based on a sub-timeslot approach. The system performance in terms of cell loss and delay is analyzed and verified by simulation.
基金Supported by the National Natural Science Foundation of China(No.69896242).
文摘Shared Memory (SM) switches are widely used for its high throughput, low delay and efficient use of memory. This paper compares the performance of two prominent switching schemes of SM packet switches: Cell-Based Switching (CBS) and Packet-Based Switching (PBS).Theoretical analysis is carried out to draw qualitative conclusion on the memory requirement,throughput and packet delay of the two schemes. Furthermore, simulations are carried out to get quantitative results of the performance comparison under various system load, traffic patterns,and memory sizes. Simulation results show that PBS has the advantage of shorter time delay while CBS has lower memory requirement and outperforms in throughput when the memory size is limited. The comparison can be used for tradeoff between performance and complexity in switch design.