A novel Opto-Chemical Ring Resonator (OCRR) has been presented for detecting gas odorant. The sensor is designed based on Morphology Dependent Resonances (MDR) which follows Maxwell's electromagnetic equations. I...A novel Opto-Chemical Ring Resonator (OCRR) has been presented for detecting gas odorant. The sensor is designed based on Morphology Dependent Resonances (MDR) which follows Maxwell's electromagnetic equations. In this paper, we have presented a novel technique to integrate chemical science and optical technology by using OCRR. Optical resonances of electromagnetic wave propagations in dielectric micro-ring resonator have been developed based on asymptotic approach. Parametric studies based on developed asymptotic expression have been presented to determine the resonance frequency at particular chemical composition. Finite element simulation is used to predict the performance of the sensor and found encouraging results for odorant sensing. Parametric studies show that present study will help to develop novel OCRR sensors tbr micro/nano technology and biomedical applications.展开更多
文摘A novel Opto-Chemical Ring Resonator (OCRR) has been presented for detecting gas odorant. The sensor is designed based on Morphology Dependent Resonances (MDR) which follows Maxwell's electromagnetic equations. In this paper, we have presented a novel technique to integrate chemical science and optical technology by using OCRR. Optical resonances of electromagnetic wave propagations in dielectric micro-ring resonator have been developed based on asymptotic approach. Parametric studies based on developed asymptotic expression have been presented to determine the resonance frequency at particular chemical composition. Finite element simulation is used to predict the performance of the sensor and found encouraging results for odorant sensing. Parametric studies show that present study will help to develop novel OCRR sensors tbr micro/nano technology and biomedical applications.