We define generalized quantum games by introducing the coherent payoff operators and propose a simple scheme to illustrate it.The scheme is implemented with a single spin qubit system and a two-entangled-qubit system....We define generalized quantum games by introducing the coherent payoff operators and propose a simple scheme to illustrate it.The scheme is implemented with a single spin qubit system and a two-entangled-qubit system.The Nash Equilibrium Theorem is proved for the models.展开更多
In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can b...In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.展开更多
We report an NMR experimental realization of a rapid quantum deletion algorithm that deletes marked states in an unsorted database.Unlike classical deletion,where search and deletion are equivalent,quantum deletion ca...We report an NMR experimental realization of a rapid quantum deletion algorithm that deletes marked states in an unsorted database.Unlike classical deletion,where search and deletion are equivalent,quantum deletion can be implemented with only a single query,which achieves exponential speed-up compared to the optimal classical analog.In the experimental realization,the GRAPE algorithm was used to obtain an optimized NMR pulse sequence,and the efficient method of maximum-likelihood has been used to reconstruct the experimental output state.展开更多
Nonadiabatic holonomic quantum computation has received increasing attention due to its robustness against control errors. However, all the previous schemes have to use at least two sequentially implemented gates to r...Nonadiabatic holonomic quantum computation has received increasing attention due to its robustness against control errors. However, all the previous schemes have to use at least two sequentially implemented gates to realize a general one-qubit gate. Based on two recent reports, we construct two Hamiltonians and experimentally realized nonadiabatic holonomic gates by a single-shot implementation in a two-qubit nuclear magnetic resonance (NMR) system. Two noncommuting one-qubit holonomic gates, rotating along .~ and ~ axes respectively, are implemented by evolving a work qubit and an ancillary qubit nonadiabatically following a quantum circuit designed. Using a sequence compiler developed for NMR quantum information processor, we optimize the whole pulse sequence, minimizing the total error of the implementation. Finally, all the nonadiabatic holonomic gates reach high unattenuated experimental fidelities over 98%.展开更多
We investigate quantum state tomography(QST) for pure states and quantum process tomography(QPT) for unitary channels via adaptive measurements. For a quantum system with a d-dimensional Hilbert space, we first propos...We investigate quantum state tomography(QST) for pure states and quantum process tomography(QPT) for unitary channels via adaptive measurements. For a quantum system with a d-dimensional Hilbert space, we first propose an adaptive protocol where only 2d. 1 measurement outcomes are used to accomplish the QST for all pure states. This idea is then extended to study QPT for unitary channels, where an adaptive unitary process tomography(AUPT) protocol of d2+d.1measurement outcomes is constructed for any unitary channel. We experimentally implement the AUPT protocol in a 2-qubit nuclear magnetic resonance system. We examine the performance of the AUPT protocol when applied to Hadamard gate, T gate(/8 phase gate), and controlled-NOT gate,respectively, as these gates form the universal gate set for quantum information processing purpose. As a comparison, standard QPT is also implemented for each gate. Our experimental results show that the AUPT protocol that reconstructing unitary channels via adaptive measurements significantly reduce the number of experiments required by standard QPT without considerable loss of fidelity.展开更多
文摘We define generalized quantum games by introducing the coherent payoff operators and propose a simple scheme to illustrate it.The scheme is implemented with a single spin qubit system and a two-entangled-qubit system.The Nash Equilibrium Theorem is proved for the models.
基金Supported by the National Natural Science Foundation of China under Grant No.10974028Fujian Provincial Natural Science Foundation of China under Grant No.2009J06002
文摘In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175094 and 91221205)the National Basic Research Program of China(Grant No.2011CB9216002)
文摘We report an NMR experimental realization of a rapid quantum deletion algorithm that deletes marked states in an unsorted database.Unlike classical deletion,where search and deletion are equivalent,quantum deletion can be implemented with only a single query,which achieves exponential speed-up compared to the optimal classical analog.In the experimental realization,the GRAPE algorithm was used to obtain an optimized NMR pulse sequence,and the efficient method of maximum-likelihood has been used to reconstruct the experimental output state.
基金supported by the National Natural Science Foundation of China(Grant Nos.91221205,and 11474181)the National Basic Research Program of China(Grants No.2015CB921002)
文摘Nonadiabatic holonomic quantum computation has received increasing attention due to its robustness against control errors. However, all the previous schemes have to use at least two sequentially implemented gates to realize a general one-qubit gate. Based on two recent reports, we construct two Hamiltonians and experimentally realized nonadiabatic holonomic gates by a single-shot implementation in a two-qubit nuclear magnetic resonance (NMR) system. Two noncommuting one-qubit holonomic gates, rotating along .~ and ~ axes respectively, are implemented by evolving a work qubit and an ancillary qubit nonadiabatically following a quantum circuit designed. Using a sequence compiler developed for NMR quantum information processor, we optimize the whole pulse sequence, minimizing the total error of the implementation. Finally, all the nonadiabatic holonomic gates reach high unattenuated experimental fidelities over 98%.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)the Canadian Institute for Advanced Research(CIFAR)+3 种基金the National Natural Science Foundation of China(Grant Nos11175094,91221205,11375167,11227901 and 91021005)the National Basic Research Program of China(Grant No.2015CB921002)the National Key Basic Research Program(NKBRP)(Grant Nos.2013CB921800and 2014CB848700)the National Science Fund for Distinguished Young Scholars(Grant No.11425523)
文摘We investigate quantum state tomography(QST) for pure states and quantum process tomography(QPT) for unitary channels via adaptive measurements. For a quantum system with a d-dimensional Hilbert space, we first propose an adaptive protocol where only 2d. 1 measurement outcomes are used to accomplish the QST for all pure states. This idea is then extended to study QPT for unitary channels, where an adaptive unitary process tomography(AUPT) protocol of d2+d.1measurement outcomes is constructed for any unitary channel. We experimentally implement the AUPT protocol in a 2-qubit nuclear magnetic resonance system. We examine the performance of the AUPT protocol when applied to Hadamard gate, T gate(/8 phase gate), and controlled-NOT gate,respectively, as these gates form the universal gate set for quantum information processing purpose. As a comparison, standard QPT is also implemented for each gate. Our experimental results show that the AUPT protocol that reconstructing unitary channels via adaptive measurements significantly reduce the number of experiments required by standard QPT without considerable loss of fidelity.