提出了一种在晶体极化声子共振区利用级联差频在Mg O∶Li Nb O_(3)平板波导中产生高频太赫兹波的方法。不同于传统的基于两束近红外光直接差频产生太赫兹波,本文首先利用两束近红外光在周期极化铌酸锂(PPLN)晶体中产生低频太赫兹波和一...提出了一种在晶体极化声子共振区利用级联差频在Mg O∶Li Nb O_(3)平板波导中产生高频太赫兹波的方法。不同于传统的基于两束近红外光直接差频产生太赫兹波,本文首先利用两束近红外光在周期极化铌酸锂(PPLN)晶体中产生低频太赫兹波和一系列级联光,然后将上述级联光耦合导入平板波导中,通过改变平板波导的尺寸优化各阶差频的相位失配分布,经级联差频高效产生高频太赫兹波。借助Mg O∶Li Nb O_(3)晶体极化声子共振区巨大的非线性光学系数,以及Mg O∶Li Nb O_(3)平板波导中被降低的太赫兹波吸收系数,在室温下通过输入两束强度均为100 MW/cm^(2)的差频光,得到了频率为5 THz的高频太赫兹波,太赫兹波强度为88.2396 MW/cm^(2),能量转换效率为44.12%。本文为产生高频、高功率太赫兹波提供了一种全新方法,可以推动高频太赫兹波在未来高速无线通信领域的应用。展开更多
NECP-SARAX是西安交通大学核工程计算物理实验室开发的先进反应堆中子学分析系统,近些年基于CEFR、PHENIX、SUPERPHENIX、JOYO MK-I、ZPR和ZPPR等反应堆开展了程序的验证与确认工作,计算结果表明:NECP-SARAX在快堆堆芯物理特性分析具有...NECP-SARAX是西安交通大学核工程计算物理实验室开发的先进反应堆中子学分析系统,近些年基于CEFR、PHENIX、SUPERPHENIX、JOYO MK-I、ZPR和ZPPR等反应堆开展了程序的验证与确认工作,计算结果表明:NECP-SARAX在快堆堆芯物理特性分析具有良好的性能。同时,利用上述反应堆中的燃料组件和控制棒组件,初步展现了截面计算程序TULIP在快谱问题计算分析上的精确性,但是仍然缺乏系统性地验证与确认。为了确认TULIP程序对于不同类型快谱问题的适用性,从国际临界安全基准评估项目中选取了147组临界实验装置进行计算分析,发现对于带有厚反射层的实验装置,TULIP程序计算k_(eff)和蒙特卡罗程序计算值的偏差超过10^(-2)。以HMF021-002实验装置构造均匀两核素问题展开研究,中等质量核素在非共振区表现出类似共振波动状的散射截面,对于使用大量结构材料的快谱系统,其非共振区类似共振波动截面的自屏效应变得不可忽略。针对此现象,对TULIP程序的共振计算策略和非共振区计算方法进行优化,采用超细群(Ultra Fine Group,UFG)的共振计算方法,对中等质量核素高装载量情况下非共振区类似共振波动状截面的自屏效应进行处理,改进程序后相应实验装置计算偏差降低到3×10^(-3)内,数值结果表明,改进后的TULIP程序对于快谱系统具有良好的计算分析能力。展开更多
文摘提出了一种在晶体极化声子共振区利用级联差频在Mg O∶Li Nb O_(3)平板波导中产生高频太赫兹波的方法。不同于传统的基于两束近红外光直接差频产生太赫兹波,本文首先利用两束近红外光在周期极化铌酸锂(PPLN)晶体中产生低频太赫兹波和一系列级联光,然后将上述级联光耦合导入平板波导中,通过改变平板波导的尺寸优化各阶差频的相位失配分布,经级联差频高效产生高频太赫兹波。借助Mg O∶Li Nb O_(3)晶体极化声子共振区巨大的非线性光学系数,以及Mg O∶Li Nb O_(3)平板波导中被降低的太赫兹波吸收系数,在室温下通过输入两束强度均为100 MW/cm^(2)的差频光,得到了频率为5 THz的高频太赫兹波,太赫兹波强度为88.2396 MW/cm^(2),能量转换效率为44.12%。本文为产生高频、高功率太赫兹波提供了一种全新方法,可以推动高频太赫兹波在未来高速无线通信领域的应用。
文摘NECP-SARAX是西安交通大学核工程计算物理实验室开发的先进反应堆中子学分析系统,近些年基于CEFR、PHENIX、SUPERPHENIX、JOYO MK-I、ZPR和ZPPR等反应堆开展了程序的验证与确认工作,计算结果表明:NECP-SARAX在快堆堆芯物理特性分析具有良好的性能。同时,利用上述反应堆中的燃料组件和控制棒组件,初步展现了截面计算程序TULIP在快谱问题计算分析上的精确性,但是仍然缺乏系统性地验证与确认。为了确认TULIP程序对于不同类型快谱问题的适用性,从国际临界安全基准评估项目中选取了147组临界实验装置进行计算分析,发现对于带有厚反射层的实验装置,TULIP程序计算k_(eff)和蒙特卡罗程序计算值的偏差超过10^(-2)。以HMF021-002实验装置构造均匀两核素问题展开研究,中等质量核素在非共振区表现出类似共振波动状的散射截面,对于使用大量结构材料的快谱系统,其非共振区类似共振波动截面的自屏效应变得不可忽略。针对此现象,对TULIP程序的共振计算策略和非共振区计算方法进行优化,采用超细群(Ultra Fine Group,UFG)的共振计算方法,对中等质量核素高装载量情况下非共振区类似共振波动状截面的自屏效应进行处理,改进程序后相应实验装置计算偏差降低到3×10^(-3)内,数值结果表明,改进后的TULIP程序对于快谱系统具有良好的计算分析能力。