A crossed molecular beams, state-to-state scattering study was carried out on the F+H2→HF+H reaction at the collision energy of 5.02 kJ/mol, using the highly sensitive H atom Rydberg tagging time-of-flight method. ...A crossed molecular beams, state-to-state scattering study was carried out on the F+H2→HF+H reaction at the collision energy of 5.02 kJ/mol, using the highly sensitive H atom Rydberg tagging time-of-flight method. All the peaks in the TOF spectra can be clearly assigned to the ro-vibrational structures of the HF product. The forward scattering of the HF product at v′=3 has been observed. The small forward scattering of the HF product at v′=2 has also been detected. Detailed theoretical analysis is required in order to fully understand the dynamical origin of these forward scattering products at this high collision energy.展开更多
Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at...Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at room temperature. The morphological, compositional, and crystal structural changes involved with reaction steps were analyzed by using transmission electron microscopy(TEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. The in-plane dipolar surface plasmon resonance (SPR) absorption band of the Ag nanoplates locating initially at around 700 nm gradually redshifted to 1 100 nm via a multi-stage replacement manner after 7 stages. The adding amount of HAuCl4 per stage influenced the average redshift value per stage, thus enabled a fine tuning of the in-plane dipolar band. A proposed formation mechanism of the original Ag nanoplates developing pores while growing Au nanoparticles covering this underlying structure at more reaction steps was confirmed by exploiting surface-enhanced Raman scattering (SERS).展开更多
The dynamics of F+HD→HF+D reaction has been studied at ten collision energies ranging from 5.43 kJ/mol to 18.73 kJ/mol using high-resolution H/D atom Rydberg tagging time-of-flight method. Product vibrational and r...The dynamics of F+HD→HF+D reaction has been studied at ten collision energies ranging from 5.43 kJ/mol to 18.73 kJ/mol using high-resolution H/D atom Rydberg tagging time-of-flight method. Product vibrational and rotational state-resolved differential cross sections have been determined. The intensity of the HF(v1=2) forward products decreases as the collision energy increases, suggesting that the resonance contribution is reduced as the collision energy increases. The forward peak of HF(vl=3) product has also been observed above the threshold of this product channel. Product energy disposals in different degrees of freedom have been analyzed. The collision energy dependence of the HF vibrational product branching was also determined. This work presents a comprehensive dynamic picture of this resonance mediated reaction in a wide collision energy regime, providing a good test ground for theoretical understandings of this interesting reaction at higher collision energies.展开更多
基金MOE Yangtse scholar innovation group development planproject(IRT0540)Jiangxi main subjects guide project(Z03502)Fujian youngscholar innovation project(2007F3052).
基金This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology and the National Natural Science Foundation of China.ACKN0WLEDGMENT This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology and the National Natural Science Foundation of China.
文摘A crossed molecular beams, state-to-state scattering study was carried out on the F+H2→HF+H reaction at the collision energy of 5.02 kJ/mol, using the highly sensitive H atom Rydberg tagging time-of-flight method. All the peaks in the TOF spectra can be clearly assigned to the ro-vibrational structures of the HF product. The forward scattering of the HF product at v′=3 has been observed. The small forward scattering of the HF product at v′=2 has also been detected. Detailed theoretical analysis is required in order to fully understand the dynamical origin of these forward scattering products at this high collision energy.
基金Project(10804101)supported by the National Natural Science Foundation of ChinaProject(2007CB815102)supported by the National Basic Research Program of ChinaProject(2007B08007)supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics,China
文摘Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at room temperature. The morphological, compositional, and crystal structural changes involved with reaction steps were analyzed by using transmission electron microscopy(TEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. The in-plane dipolar surface plasmon resonance (SPR) absorption band of the Ag nanoplates locating initially at around 700 nm gradually redshifted to 1 100 nm via a multi-stage replacement manner after 7 stages. The adding amount of HAuCl4 per stage influenced the average redshift value per stage, thus enabled a fine tuning of the in-plane dipolar band. A proposed formation mechanism of the original Ag nanoplates developing pores while growing Au nanoparticles covering this underlying structure at more reaction steps was confirmed by exploiting surface-enhanced Raman scattering (SERS).
基金This work was supported by the Chinese Academy of Sciences, the National Natural Science Foundation of China, and the Ministry of Science and Technology of China.
文摘The dynamics of F+HD→HF+D reaction has been studied at ten collision energies ranging from 5.43 kJ/mol to 18.73 kJ/mol using high-resolution H/D atom Rydberg tagging time-of-flight method. Product vibrational and rotational state-resolved differential cross sections have been determined. The intensity of the HF(v1=2) forward products decreases as the collision energy increases, suggesting that the resonance contribution is reduced as the collision energy increases. The forward peak of HF(vl=3) product has also been observed above the threshold of this product channel. Product energy disposals in different degrees of freedom have been analyzed. The collision energy dependence of the HF vibrational product branching was also determined. This work presents a comprehensive dynamic picture of this resonance mediated reaction in a wide collision energy regime, providing a good test ground for theoretical understandings of this interesting reaction at higher collision energies.