期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一个(3+1)维孤子方程的共振孤波解
1
作者 郭婷婷 《中北大学学报(自然科学版)》 CAS 2020年第3期199-202,共4页
基于双线性算子及其性质,结合孤子方程指数型传播波的线性叠加原理,讨论了一个(3+1)维非线性发展方程的孤波解,当M-波变元为实数时,将波的频率和数目参数化,构造出该孤子方程的扭状孤波和钟型孤波.将线性叠加原理推广到复数域来构造高... 基于双线性算子及其性质,结合孤子方程指数型传播波的线性叠加原理,讨论了一个(3+1)维非线性发展方程的孤波解,当M-波变元为实数时,将波的频率和数目参数化,构造出该孤子方程的扭状孤波和钟型孤波.将线性叠加原理推广到复数域来构造高维孤子方程的共振孤子解,这种复指数波函数解是由一系列指数和三角型波组合而成的M-波共振孤子解,随着时间的变化,这种多重孤波会产生共振现象.基于多重共振孤波解,在解空间中构造出该高维孤子方程的complexiton解. 展开更多
关键词 (3+1)维孤子方程 双线性算子 线性叠加原理 共振孤子解 complexiton
下载PDF
Matter-Wave Solitons in Two-Component Bose—Einstein Condensates with Tunable Interactions and Time Varying Potential
2
作者 宣恒农 左苗 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第12期1035-1040,共6页
We present three families of exact matter-wave soliton solutions for an effective one-dimension twocomponent Bose-Einstein condensates(BECs) with tunable interactions,harmonic potential and gain or loss term. We inves... We present three families of exact matter-wave soliton solutions for an effective one-dimension twocomponent Bose-Einstein condensates(BECs) with tunable interactions,harmonic potential and gain or loss term. We investigate the dynamics of bright-bright solitons,bright-dark solitons and dark-dark solitons for the time-dependent expulsive harmonic trap potential,periodically modulated harmonic trap potential,and kinklike modulated harmonic trap potential.Through the Feshbach resonance,these dynamics can be realized in experiments by suitable control of time-dependent trap parameters,atomic interactions,and interaction with thermal cloud. 展开更多
关键词 matter-wave solitons Bose-Einstein condensates coupled Gross-Pitaevskii equation
下载PDF
N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation
3
作者 王鑫 耿献国 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第8期155-164,共10页
We derive the Lax pair and Darboux transformation for the(2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painlev′e analysis. N-soliton solution in a compact determinant repr... We derive the Lax pair and Darboux transformation for the(2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painlev′e analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of the bright and dark soliton solutions under periodic and parabolic oscillations up to second order are shown. Resonant behaviors of two bright and two dark solitons are studied, and asymptotic analysis of the corresponding resonant bright and dark two-soliton solutions are performed, respectively. 展开更多
关键词 Darboux transformation soliton solutions soliton resonances (2+1)-dimensional inhomogeneousGardner equation asymptotic analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部