The open electron resonator is a mesoscopic device that has attracted considerable attention due to its remarkable behavior: conductance oscillations. In this paper, using an improved quantum theory to mesoscopic cir...The open electron resonator is a mesoscopic device that has attracted considerable attention due to its remarkable behavior: conductance oscillations. In this paper, using an improved quantum theory to mesoscopic circuits developed recently by Li and Chen, the mesoscopic electron resonator is quantized based on the fundamental fact that the electric charge takes discrete value. With presentation transformation and unitary transformation, the SchrSdinger equation becomes an standard Mathieu equation. Then, the detailed energy spectrum and wave functions in the system axe obtained, which will be helpful to the observation of other characters of electron resonator. The average of currents and square of the current are calculated, the results show the existence of the current fluctuation, which causes the noise in the circuits, the influence of inductance to the noise is discussed. With the results achieved, the stability characters of mesoscopic electron resonator are studied firstly, these works would be benefit to the design and control of integrate circuit.展开更多
In bandpass sigma delta modulator, resonator is the key block, This papcr proposed a new resonator which can simplify the circuit implementation when designing bandpass modulator with Iowpass prototype. The effect of ...In bandpass sigma delta modulator, resonator is the key block, This papcr proposed a new resonator which can simplify the circuit implementation when designing bandpass modulator with Iowpass prototype. The effect of finite gain, finite bandwidth, and path mismatch on the resonator is analyzed. The function of the proposed resonator and the devired equations about path mismatch have been verified by switched capacitor software SWITCAR.展开更多
Monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is an important development direction of ultra-high speed integrated circuit. A kind of top-RTD and bottom-HEMT...Monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is an important development direction of ultra-high speed integrated circuit. A kind of top-RTD and bottom-HEMT material structure is epitaxied on InP substrate through molecular beam epitaxy. Based on wet chemical etching, metal lift-off and air bridge interconnection technology, RTD and HEMT are fabricated simultaneously. The peak-to-valley current ratio of RTD is 7.7 and the peak voltage is 0.33 V at room temperature. The pinch-off voltage is -0.5 V and the current gain cut-frequency is 30 GHz for a 1.0 μm gate length depletion mode HEMT. The two devices are conformable in current magnitude, which is suitable for the construction of various RTD/HEMT monolithic integration logic circuits.展开更多
Radiofrequency coil is one of the most important components for a nuclear magnetic resonance(NMR)instrument.In this article,some planar micro coils with an inner diameter of 2 mm and number of turns that varied from 1...Radiofrequency coil is one of the most important components for a nuclear magnetic resonance(NMR)instrument.In this article,some planar micro coils with an inner diameter of 2 mm and number of turns that varied from 1 to 11 were investigated based on the printed circuit board(PCB)technology.The electrical characterization of micro coils show that self-resonant frequencies are larger than 200 MHz.Then,an NMR measurement platform with a static magnetic field of 0.66 T was constructed and the signal to noise ratio(SNR)values of the NMR were analyzed.It was found that the SNR is optimal when the turn number of the micro coils is six and the excitation time of a 90°pulse is 0.8?s.Finally,we used the micro coil with six turns to study the transverse relaxation rate of copper sulfate pentahydrate aqueous solution with different concentrations.It was found that the transverse relaxation rate is proportional to the solution concentration.Results from the micro coil were verified by measurements using a Bruker Minispec MQ60.展开更多
Given the interdisciplinary challenges in materials sciences, chemistry, physics, and biology, as well as the demands to merge electronics and photonics at the nanometer scale for miniaturized integrated circuits, pla...Given the interdisciplinary challenges in materials sciences, chemistry, physics, and biology, as well as the demands to merge electronics and photonics at the nanometer scale for miniaturized integrated circuits, plasmonics serves as a bridge by breaking the limit in the speed of nanoscale electronics and the size of terahertz dielectric photonics. Active plasmonic systems enabling active control over the plasmonic properties in real time have opened up a wealth of potential applications. This review focuses on the development of active plasmonic response devices. Significant advances have been achieved in control over the dielectric properties of the active surrounding medium, including liquid crystals, polymers, photochromic molecules and inorganic materials, which in turn allows tuning of the reversible plasmon resonance switch of neighboring metal nanostructures.展开更多
基金supported by National Natural Science Foundation of China under Grant No.10405009the Youth Foundation of North China Electric Power University
文摘The open electron resonator is a mesoscopic device that has attracted considerable attention due to its remarkable behavior: conductance oscillations. In this paper, using an improved quantum theory to mesoscopic circuits developed recently by Li and Chen, the mesoscopic electron resonator is quantized based on the fundamental fact that the electric charge takes discrete value. With presentation transformation and unitary transformation, the SchrSdinger equation becomes an standard Mathieu equation. Then, the detailed energy spectrum and wave functions in the system axe obtained, which will be helpful to the observation of other characters of electron resonator. The average of currents and square of the current are calculated, the results show the existence of the current fluctuation, which causes the noise in the circuits, the influence of inductance to the noise is discussed. With the results achieved, the stability characters of mesoscopic electron resonator are studied firstly, these works would be benefit to the design and control of integrate circuit.
文摘In bandpass sigma delta modulator, resonator is the key block, This papcr proposed a new resonator which can simplify the circuit implementation when designing bandpass modulator with Iowpass prototype. The effect of finite gain, finite bandwidth, and path mismatch on the resonator is analyzed. The function of the proposed resonator and the devired equations about path mismatch have been verified by switched capacitor software SWITCAR.
基金Supported by National Natural Science Foundation of China (No. 60876009)Tianjin Research Program of Application Foundation and Advanced Technology (No. 09JCZDJC16600)
文摘Monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is an important development direction of ultra-high speed integrated circuit. A kind of top-RTD and bottom-HEMT material structure is epitaxied on InP substrate through molecular beam epitaxy. Based on wet chemical etching, metal lift-off and air bridge interconnection technology, RTD and HEMT are fabricated simultaneously. The peak-to-valley current ratio of RTD is 7.7 and the peak voltage is 0.33 V at room temperature. The pinch-off voltage is -0.5 V and the current gain cut-frequency is 30 GHz for a 1.0 μm gate length depletion mode HEMT. The two devices are conformable in current magnitude, which is suitable for the construction of various RTD/HEMT monolithic integration logic circuits.
基金supported by the National Natural Science Foundation of China(Grant No.51175083)the Jiangsu Province University Industry Cooperation Innovation Foundation-Prospective Study of China(Grant No.BY 2011135)
文摘Radiofrequency coil is one of the most important components for a nuclear magnetic resonance(NMR)instrument.In this article,some planar micro coils with an inner diameter of 2 mm and number of turns that varied from 1 to 11 were investigated based on the printed circuit board(PCB)technology.The electrical characterization of micro coils show that self-resonant frequencies are larger than 200 MHz.Then,an NMR measurement platform with a static magnetic field of 0.66 T was constructed and the signal to noise ratio(SNR)values of the NMR were analyzed.It was found that the SNR is optimal when the turn number of the micro coils is six and the excitation time of a 90°pulse is 0.8?s.Finally,we used the micro coil with six turns to study the transverse relaxation rate of copper sulfate pentahydrate aqueous solution with different concentrations.It was found that the transverse relaxation rate is proportional to the solution concentration.Results from the micro coil were verified by measurements using a Bruker Minispec MQ60.
文摘Given the interdisciplinary challenges in materials sciences, chemistry, physics, and biology, as well as the demands to merge electronics and photonics at the nanometer scale for miniaturized integrated circuits, plasmonics serves as a bridge by breaking the limit in the speed of nanoscale electronics and the size of terahertz dielectric photonics. Active plasmonic systems enabling active control over the plasmonic properties in real time have opened up a wealth of potential applications. This review focuses on the development of active plasmonic response devices. Significant advances have been achieved in control over the dielectric properties of the active surrounding medium, including liquid crystals, polymers, photochromic molecules and inorganic materials, which in turn allows tuning of the reversible plasmon resonance switch of neighboring metal nanostructures.