期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
压电能量俘获结构及其升频转换技术的发展现状 被引量:1
1
作者 吴义鹏 李森 +4 位作者 蓝春波 周圣鹏 谢维泰 裘进浩 季宏丽 《机械工程学报》 EI CAS CSCD 北大核心 2022年第20期27-45,共19页
压电材料作为一种良好的机电换能元件,具有体积小、成本低、工作性能可靠等优势,但如何设计压电振子高效地俘获环境振动能,仍是本领域的关键技术难题。以定频式、调频式和宽频式三类典型压电振子为代表的结构共振频率匹配设计能部分解... 压电材料作为一种良好的机电换能元件,具有体积小、成本低、工作性能可靠等优势,但如何设计压电振子高效地俘获环境振动能,仍是本领域的关键技术难题。以定频式、调频式和宽频式三类典型压电振子为代表的结构共振频率匹配设计能部分解决上述难题,但面向环境低频、超低频振动能俘获,上述振子仍面临输出功率低、可靠性差等问题,途径之一是通过机械式升频转换技术将低频激励转换成压电振子的高频振荡,同时突破超低频压电元件功率密度低的限制。几类机械式升频转换技术被区分并简要介绍,重点阐述一种借助非线性系统内共振现象实现的机械升频转换方法。内共振升频技术具有激励加速度阈值低、升频转化能量损失少等优势,进一步拓宽压电振子领域内的机械式升频转换研究。 展开更多
关键词 振动能量收集 压电振子 共振频率匹配 升频转换 共振
原文传递
Signal-to-noise ratio gain of an adaptive neuron model with Gamma renewal synaptic input 被引量:1
2
作者 Yanmei Kang Yuxuan Fu Yaqian Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第1期148-156,共9页
We take an adaptive leaky integrate-and-fire neuron model to explore the effect of non-Poisson neurotransmitter on stochastic resonance and its signal-to-noise ratio(SNR)gain.Event triggered algorithm is adopted to sp... We take an adaptive leaky integrate-and-fire neuron model to explore the effect of non-Poisson neurotransmitter on stochastic resonance and its signal-to-noise ratio(SNR)gain.Event triggered algorithm is adopted to speed up the simulating process.It is revealed that both the output SNR and the SNR gain can be monotonically improved when increasing the shape parameter for Gamma distribution.Particularly,for large signal coupling strength,the 1:1 stochastic phase locking induced by Gamma noise is responsible for the frequency matching stochastic resonance,and the output signal-to-noise ratio can surpass the input signal-to-noise ratio,which is significantly different with Poisson case,while for extremely weak signal coupling strength,the SNR gain peak,which is far larger than unity,is due to noise induced resonance.The observations are meaningful in understanding the neural processing mechanisms from a more realistic viewpoint of synaptic modeling. 展开更多
关键词 Shot noise Gamma renewal point process Signal-to-noise ratio gain Adaptive integrate-and-fire model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部