Silver-tin oxide powders were synthesized by the hydrothermal method with Ag(NH_3)_2^+ solution and Na_2SnO_3 solution as raw materials and Na_2SO_3 as reductant. The precipitation conditions of Na2SnO3 solution and t...Silver-tin oxide powders were synthesized by the hydrothermal method with Ag(NH_3)_2^+ solution and Na_2SnO_3 solution as raw materials and Na_2SO_3 as reductant. The precipitation conditions of Na2SnO3 solution and the reduction conditions of Ag(NH_3)_2^+ were also investigated. The powders prepared were characterized by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and energy spectrum analysis. The results show that pH value of the solution is a key parameter in the formation of Sn(OH)_4 precipitate and the reduction reaction of Ag(NH_3)_2^+ can release H+ ions, which results in synchronous precipitation of Sn(OH)_6~2- as Sn(OH)_4. The reduction of Ag(NH_3)_2^+ and precipitation of Na_2SnO_3 occur simultaneously and the coprecipitation of silver and tin oxide is reached by the hydrothermal method. The silver-tin oxide composite powders have mainly flake shape of about 0.3 μm in thickness and there exists homogeneous distribution of tin oxide and silver in the powder synthesized.展开更多
Uniform core-shell SiO2@Fe_3O_4@C microspheres were prepared by a one-step hydrothermal method with SiO_2 microspheres as the template, and the hollow Fe_3O_4@C(HFC) microspheres were achieved via etching SiO_2 templa...Uniform core-shell SiO2@Fe_3O_4@C microspheres were prepared by a one-step hydrothermal method with SiO_2 microspheres as the template, and the hollow Fe_3O_4@C(HFC) microspheres were achieved via etching SiO_2 template. By changing the sizes of SiO_2 microspheres, a series of HFC microspheres with variable cavity sizes were obtained to study the relationship between cavity size and microwave absorbing(MA) performance for the first time. The morphology and structure of samples were characterized in detail. The results showed that the MA performance of HFC sample depended on its cavity size. In particular, the hollow structure was good for improving MA performance and could make MA move to the high-frequency region. More importantly, as the cavity size increases, the resonance frequency of HFC-i(i=1,2, 3, 4) samples moved to a low frequency, and the optimal matching thickness of HFC-i samples was increasing. Among all HFC-i samples, HFC-3 showed the most excellent MA performance,which could be mainly explained by the quarter-wavelength matching model, intrinsical magnetic and dielectric loss. Furthermore,the MA performance of HFC mixture blended by the equal mass fraction of HFC-2, HFC-3 and HFC-4 was the comprehensive results of three HFC-i samples. All the above suggested that the cavity size in HFC sample had a great influence on the MA performance.展开更多
基金Project(2001BA901A09)supported by the Key Program of Science and Technology Action of West China Development
文摘Silver-tin oxide powders were synthesized by the hydrothermal method with Ag(NH_3)_2^+ solution and Na_2SnO_3 solution as raw materials and Na_2SO_3 as reductant. The precipitation conditions of Na2SnO3 solution and the reduction conditions of Ag(NH_3)_2^+ were also investigated. The powders prepared were characterized by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and energy spectrum analysis. The results show that pH value of the solution is a key parameter in the formation of Sn(OH)_4 precipitate and the reduction reaction of Ag(NH_3)_2^+ can release H+ ions, which results in synchronous precipitation of Sn(OH)_6~2- as Sn(OH)_4. The reduction of Ag(NH_3)_2^+ and precipitation of Na_2SnO_3 occur simultaneously and the coprecipitation of silver and tin oxide is reached by the hydrothermal method. The silver-tin oxide composite powders have mainly flake shape of about 0.3 μm in thickness and there exists homogeneous distribution of tin oxide and silver in the powder synthesized.
基金supported by the National Natural Science Foundation of China (20104017)the College Students’ Science and Technology Innovation Activities Plan of Zhejiang (2014R404056)
文摘Uniform core-shell SiO2@Fe_3O_4@C microspheres were prepared by a one-step hydrothermal method with SiO_2 microspheres as the template, and the hollow Fe_3O_4@C(HFC) microspheres were achieved via etching SiO_2 template. By changing the sizes of SiO_2 microspheres, a series of HFC microspheres with variable cavity sizes were obtained to study the relationship between cavity size and microwave absorbing(MA) performance for the first time. The morphology and structure of samples were characterized in detail. The results showed that the MA performance of HFC sample depended on its cavity size. In particular, the hollow structure was good for improving MA performance and could make MA move to the high-frequency region. More importantly, as the cavity size increases, the resonance frequency of HFC-i(i=1,2, 3, 4) samples moved to a low frequency, and the optimal matching thickness of HFC-i samples was increasing. Among all HFC-i samples, HFC-3 showed the most excellent MA performance,which could be mainly explained by the quarter-wavelength matching model, intrinsical magnetic and dielectric loss. Furthermore,the MA performance of HFC mixture blended by the equal mass fraction of HFC-2, HFC-3 and HFC-4 was the comprehensive results of three HFC-i samples. All the above suggested that the cavity size in HFC sample had a great influence on the MA performance.