现有无监督哈希检索算法的关注点在于哈希映射过程中的信息损失以及生成哈希的质量问题,忽略了图像特征本身对检索精度的影响。为进一步提高检索的精度,提出一种改进的基于特征共现的无监督哈希检索算法(Unsupervised Hash retrieval al...现有无监督哈希检索算法的关注点在于哈希映射过程中的信息损失以及生成哈希的质量问题,忽略了图像特征本身对检索精度的影响。为进一步提高检索的精度,提出一种改进的基于特征共现的无监督哈希检索算法(Unsupervised Hash retrieval algorithm based on Feature Co-occurrence,UHFC)。该算法共分为两个阶段:深度特征提取和无监督哈希生成。为提高图像特征的质量,UHFC在卷积神经网络(Convolutional Neural Network,CNN)结构的最后一层卷积后引入了共现层,用来提取特征之间的依赖关系。并用共现激活值的均值来表示共现程度,解决原共现操作存在相同两个通道的共现值不一致的问题;接着,在特征融合部分UHFC设计一种适用于共现特征融合的,结合空间注意力机制的注意特征融合方法(Attention Feature Fusion method based on Spatial attention,AFF-S)。通过注意力机制自主学习共现特征与深度特征融合的权重,降低特征融合过程中背景因素的干扰,提高最终图像特征的表达能力。最后,根据最优传输策略,UHFC采用双半分布哈希编码对图像特征到哈希码的映射过程进行监督,并在哈希层后添加一层分类层通过KL损失进一步提高哈希码所包含的图片信息,整个训练过程中无需数据集的标注,实现无监督哈希的生成。实验表明,UHFC对哈希编码质量改善较好,在Flickr25k和Nus-wide数据集上其平均均值精度(mean Average Precision,mAP)分别达到了87.8%和82.8%,相比于baseline方法分别提高了2.1%与1.2%,效果明显。展开更多
U-Net在图像分割领域取得了巨大成功,然而卷积和下采样操作导致部分位置信息丢失,全局和长距离的语义交互信息难以被学习,并且缺乏整合全局和局部信息的能力。为了提取丰富的局部细节和全局上下文信息,提出了一个基于卷积胶囊编码器和...U-Net在图像分割领域取得了巨大成功,然而卷积和下采样操作导致部分位置信息丢失,全局和长距离的语义交互信息难以被学习,并且缺乏整合全局和局部信息的能力。为了提取丰富的局部细节和全局上下文信息,提出了一个基于卷积胶囊编码器和局部共现的医学图像分割网络MLFCNet(network based on convolution capsule encoder and multi-scale local feature co-occurrence)。在U-Net基础上引入胶囊网络模块,学习目标位置信息、局部与全局的关系。同时利用提出的注意力机制保留网络池化层丢弃的信息,并且设计了新的多尺度特征融合方法,从而捕捉全局信息并抑制背景噪声。此外,提出了一种新的多尺度局部特征共现算法,局部特征之间的关系能够被更好地学习。在两个公共数据集上与九种方法进行了比较,相比于性能第二的模型,该方法的mIoU在肝脏医学图像中提升了4.7%,Dice系数提升了1.7%。在肝脏医学图像和人像数据集上的实验结果表明,在相同的实验条件下,提出的网络优于U-Net和其他主流的图像分割网络。展开更多
情感分类是用于判断数据的情感极性,广泛用于商品评论、微博话题等数据。标记信息的昂贵使得传统的情感分类方法难以对不同领域的数据进行有效的分类。为此,跨领域情感分类问题引起广泛关注。已有的跨领域情感分类方法大多以共现为基础...情感分类是用于判断数据的情感极性,广泛用于商品评论、微博话题等数据。标记信息的昂贵使得传统的情感分类方法难以对不同领域的数据进行有效的分类。为此,跨领域情感分类问题引起广泛关注。已有的跨领域情感分类方法大多以共现为基础提取词汇特征和句法特征,而忽略了词语间的语义关系。基于此,提出了基于word2vec的跨领域情感分类方法 WEEF(cross-domain classification based on word embedding extension feature),选取高质量的领域共现特征作为桥梁,并以这些特征作为种子,基于词向量的相似度计算,将领域专有特征扩充到这些种子中,形成特征簇,从而减小领域间的差异。在SRAA和Amazon产品评论数据集上的实验结果表明了方法的有效性,尤其在数据量较大时。展开更多
Cities' urban morphology is the result of historic, cultural, political and social processes. The historical cores in Mexican cities have high cultural diversity, which also intermingle pre-Hispanic cultures with col...Cities' urban morphology is the result of historic, cultural, political and social processes. The historical cores in Mexican cities have high cultural diversity, which also intermingle pre-Hispanic cultures with colonial forms, as well with modernity and post-modernity irruption. The case study is Santa Barbara's neighborhood in Toluca City, which was founded in 1524, and the case study was the first neighborhood in Toluca's historical core. At present time, this neighborhood is considered as one of the most dangerous places in the city's historical core, therefore, it has been abandoned. This paper will display the changes in urban morphology of the neighborhood through the years from 1877 to 2010. For site evaluation, the methodologies of Ashihara (1982) and Lynch's (1961) were used in order to analyze positive and negative spaces, as well as main street visual features, street and avenue directions, street circulation and street circulation path configuration. The results show that the focal nodes are a key factor for economic and social reactivation, with which, through urban activation of vacant lots and the traditional use of the streets as public space, is possible to generate centripetal development to restructure the neighborhood.展开更多
文摘现有无监督哈希检索算法的关注点在于哈希映射过程中的信息损失以及生成哈希的质量问题,忽略了图像特征本身对检索精度的影响。为进一步提高检索的精度,提出一种改进的基于特征共现的无监督哈希检索算法(Unsupervised Hash retrieval algorithm based on Feature Co-occurrence,UHFC)。该算法共分为两个阶段:深度特征提取和无监督哈希生成。为提高图像特征的质量,UHFC在卷积神经网络(Convolutional Neural Network,CNN)结构的最后一层卷积后引入了共现层,用来提取特征之间的依赖关系。并用共现激活值的均值来表示共现程度,解决原共现操作存在相同两个通道的共现值不一致的问题;接着,在特征融合部分UHFC设计一种适用于共现特征融合的,结合空间注意力机制的注意特征融合方法(Attention Feature Fusion method based on Spatial attention,AFF-S)。通过注意力机制自主学习共现特征与深度特征融合的权重,降低特征融合过程中背景因素的干扰,提高最终图像特征的表达能力。最后,根据最优传输策略,UHFC采用双半分布哈希编码对图像特征到哈希码的映射过程进行监督,并在哈希层后添加一层分类层通过KL损失进一步提高哈希码所包含的图片信息,整个训练过程中无需数据集的标注,实现无监督哈希的生成。实验表明,UHFC对哈希编码质量改善较好,在Flickr25k和Nus-wide数据集上其平均均值精度(mean Average Precision,mAP)分别达到了87.8%和82.8%,相比于baseline方法分别提高了2.1%与1.2%,效果明显。
文摘U-Net在图像分割领域取得了巨大成功,然而卷积和下采样操作导致部分位置信息丢失,全局和长距离的语义交互信息难以被学习,并且缺乏整合全局和局部信息的能力。为了提取丰富的局部细节和全局上下文信息,提出了一个基于卷积胶囊编码器和局部共现的医学图像分割网络MLFCNet(network based on convolution capsule encoder and multi-scale local feature co-occurrence)。在U-Net基础上引入胶囊网络模块,学习目标位置信息、局部与全局的关系。同时利用提出的注意力机制保留网络池化层丢弃的信息,并且设计了新的多尺度特征融合方法,从而捕捉全局信息并抑制背景噪声。此外,提出了一种新的多尺度局部特征共现算法,局部特征之间的关系能够被更好地学习。在两个公共数据集上与九种方法进行了比较,相比于性能第二的模型,该方法的mIoU在肝脏医学图像中提升了4.7%,Dice系数提升了1.7%。在肝脏医学图像和人像数据集上的实验结果表明,在相同的实验条件下,提出的网络优于U-Net和其他主流的图像分割网络。
文摘情感分类是用于判断数据的情感极性,广泛用于商品评论、微博话题等数据。标记信息的昂贵使得传统的情感分类方法难以对不同领域的数据进行有效的分类。为此,跨领域情感分类问题引起广泛关注。已有的跨领域情感分类方法大多以共现为基础提取词汇特征和句法特征,而忽略了词语间的语义关系。基于此,提出了基于word2vec的跨领域情感分类方法 WEEF(cross-domain classification based on word embedding extension feature),选取高质量的领域共现特征作为桥梁,并以这些特征作为种子,基于词向量的相似度计算,将领域专有特征扩充到这些种子中,形成特征簇,从而减小领域间的差异。在SRAA和Amazon产品评论数据集上的实验结果表明了方法的有效性,尤其在数据量较大时。
文摘Cities' urban morphology is the result of historic, cultural, political and social processes. The historical cores in Mexican cities have high cultural diversity, which also intermingle pre-Hispanic cultures with colonial forms, as well with modernity and post-modernity irruption. The case study is Santa Barbara's neighborhood in Toluca City, which was founded in 1524, and the case study was the first neighborhood in Toluca's historical core. At present time, this neighborhood is considered as one of the most dangerous places in the city's historical core, therefore, it has been abandoned. This paper will display the changes in urban morphology of the neighborhood through the years from 1877 to 2010. For site evaluation, the methodologies of Ashihara (1982) and Lynch's (1961) were used in order to analyze positive and negative spaces, as well as main street visual features, street and avenue directions, street circulation and street circulation path configuration. The results show that the focal nodes are a key factor for economic and social reactivation, with which, through urban activation of vacant lots and the traditional use of the streets as public space, is possible to generate centripetal development to restructure the neighborhood.