The basic conditions of the enterprise informatization in Heilongjiang province are analyzed and 4 models are designed to drive the industrial and commercial information enterprise. The 4 models are the Resource Integ...The basic conditions of the enterprise informatization in Heilongjiang province are analyzed and 4 models are designed to drive the industrial and commercial information enterprise. The 4 models are the Resource Integration Informatization Model, the Flow Management Informatization Model, the Intranet E-commerce Informatization Model and the Network Enterprise Informatization Model. The conditions for using and problems needing attentions of these 4 models are also analyzed.展开更多
With the huge rise of energy demand,the power system in the current era is moving to a new standard with increased access to renewable energy sources(RESs)integrated with distribution generation(DG)network.The RESs ne...With the huge rise of energy demand,the power system in the current era is moving to a new standard with increased access to renewable energy sources(RESs)integrated with distribution generation(DG)network.The RESs necessitate interfaces for controlling the power generation.The multilevel inverter(MLI)can be exploited for RESs in two diverse modes,namely,the power generation mode(stand-alone mode),and compensator mode(statcom).Few works have been carried out in optimization of controller gains with the load variations of the single type such as reactive load variation in different cases.Nevertheless,this load type may be unbalanced hence,to overcome such issues.So,a sophisticated optimization algorithm is important.This paper aims to introduce a control design via an optimization assisted PI controller for a 7-level inverter.In the present technique,the gains of the PI controller are adjusted dynamically by the adopted hybrid scheme,grey optimizer with dragon levy update(GD-LU),based on the operating conditions of the system.Here,the gains are adjusted such that the error between the reference signal and fault signal should be minimal.Thus,better dynamic performance could be attained by the present optimized PI controller.The proposed algorithm is the combined version of grey wolf optimization(GWO)and dragonfly algorithm(DA).Finally,the performance of the proposed work is compared and validated over other state-of-the-art models concerning error measures.展开更多
It is well known that a SMPS (switched-mode power supply) is easy to produce strong EMI (electromagnetic interference) and fails in EMC (electromagnetic compatibility) test for its far field radiation exceeds th...It is well known that a SMPS (switched-mode power supply) is easy to produce strong EMI (electromagnetic interference) and fails in EMC (electromagnetic compatibility) test for its far field radiation exceeds the limits between 30-200 MHz. Based on asymmetry line antenna theory, a novel far field CM (common mode) radiation model, including an equivalent driving source, radiation structure and some key influence factors, is identified and built up for a small flyback power supply. Radiation characteristics of this model are predicted by using Ansoft HFSS software and the model effectiveness is verified by experiment. In the end, the radiation role of some key factors, such as the length of output cable, common mode impedance of AC grid, layout of cable and reflected ground, are studied using simulation in detail.展开更多
The results of the implementation of an actual microgrid in the Netherlands are presented. This microgrid has photovoltaic panels as microsources, energy storage, and a flexible AC distribution interfacing system that...The results of the implementation of an actual microgrid in the Netherlands are presented. This microgrid has photovoltaic panels as microsources, energy storage, and a flexible AC distribution interfacing system that can operate connected to the public grid or autonomously where it regulates the site's voltage and frequency. In this paper, the potential of the microgrid in improving power quality issues of the site, specifically harmonic distortions, is demonstrated. Results show that flexible AC distribution interfacing system devices were able to compensate voltage harmonics when the microgrid was operating connected to the public grid and when operating autonomously. Other tests such as short-circuit, synchronization and blackstart were also conducted. The improvement in power quality and positive results of the other tests demonstrate that a self-supporting, reliable and efficient operation of the microgrid can be achieved.展开更多
The inter-line dynamic voltage restorer (IDVR) consists of several voltage source inverters connected to different independent distribution feeders with common dc bus. When one of the inverters compensates for volta...The inter-line dynamic voltage restorer (IDVR) consists of several voltage source inverters connected to different independent distribution feeders with common dc bus. When one of the inverters compensates for voltage sag that appears in its feeder (voltage control mode), the other inverters pump the required power into the dc bus (power control mode). Each inverter will have both voltage and power controllers; only one controller is in use during the abnormal conditions according to its feeder state. The voltage controller uses one of the dynamic voltage restoration techniques. In this paper, the in-phase technique is applied and two types of loads are considered (constant impedance and three phase induction motor). Since the voltage restoration process may need real power injection into the distribution system, the power controller injects this power via voltage injection. This voltage injection is simulated by voltage drop across series virtual impedance. A new scheme is proposed to select the impedance value. The impedance value is selected such that the power consumed by this impedance represents the required power to be transferred without perturbing the load voltage. The performance of this system is also studied during voltage swell. A scheme for operation of multi-feeder IDVR system is proposed in this paper. Simulation results substantiate the proposed concept.展开更多
Multi-charged helium ion beam He2+ is useful for helium accelerator to obtain a higher energy with lower cost and for deuterium accelerator to avoid neutron activation during machine commissioning. An attempt to gene...Multi-charged helium ion beam He2+ is useful for helium accelerator to obtain a higher energy with lower cost and for deuterium accelerator to avoid neutron activation during machine commissioning. An attempt to generate milliampere multi-charged helium He2+ ion beam with a 2.45 GHz electron cyclotron resonance ion source (ECRIS) was tested recently. A design using a specfic permanent magnet 2.45 GHz ECRIS (PMECRIS) source (ERCIS) is reported and the He2~ beam production ability is described. With this source, we produced a total helium beam of 40 mA at 40 kV with 180 W of net microwave power and a gas flow of less than 0.5 seem. At steady state the He2+ beam intensity is 4.4 rnA, that being the fraction of multi-charged he- lium ion beam is at approximately 11%.展开更多
Multiple charge ions (MCIs) are necessary for increasing the output energy of particles in accelerators. In general, MCI beams are largely produced by electron beam ion source (EBIS) [1], laser ion source (LIS) [2], o...Multiple charge ions (MCIs) are necessary for increasing the output energy of particles in accelerators. In general, MCI beams are largely produced by electron beam ion source (EBIS) [1], laser ion source (LIS) [2], or high-frequency (mostly >5 GHz) electron cyclotron resonance (ECR) ion source [3]. Among these, only ECR ion source can operate in the continuous wave (CW) mode, while EBIS and LIS only support pulses. In addition, ECR ion source with lower frequency (mostly 2.45 GHz) are required primarily for generating single charge state ions, because the corresponding ECR field (875 Gs) is not sufficiently strong for MCI generation [4].展开更多
Cooling is very important for the safe operation of an electron cyclotron resonance ion source(ECRIS),especially when the window current density is very high(up to 11 A/mm2).We proposed an innovative cooling method us...Cooling is very important for the safe operation of an electron cyclotron resonance ion source(ECRIS),especially when the window current density is very high(up to 11 A/mm2).We proposed an innovative cooling method using evaporative cooling technology.A demonstration prototype was designed,built and tested.The on-site test results showed that the temperature of the solenoids and permanent magnets maintains well in the normal operational range of 14–18 GHz.A simple computational model was developed to predict the characteristics of the two-phase flow.The predicted temperatures agreed well with the on-site test data within 2 K.We also proposed useful design criteria.The successful operation of the system indicates the potential for broad application of evaporative cooling technology in situations in which the power intensity is very high.展开更多
文摘The basic conditions of the enterprise informatization in Heilongjiang province are analyzed and 4 models are designed to drive the industrial and commercial information enterprise. The 4 models are the Resource Integration Informatization Model, the Flow Management Informatization Model, the Intranet E-commerce Informatization Model and the Network Enterprise Informatization Model. The conditions for using and problems needing attentions of these 4 models are also analyzed.
文摘With the huge rise of energy demand,the power system in the current era is moving to a new standard with increased access to renewable energy sources(RESs)integrated with distribution generation(DG)network.The RESs necessitate interfaces for controlling the power generation.The multilevel inverter(MLI)can be exploited for RESs in two diverse modes,namely,the power generation mode(stand-alone mode),and compensator mode(statcom).Few works have been carried out in optimization of controller gains with the load variations of the single type such as reactive load variation in different cases.Nevertheless,this load type may be unbalanced hence,to overcome such issues.So,a sophisticated optimization algorithm is important.This paper aims to introduce a control design via an optimization assisted PI controller for a 7-level inverter.In the present technique,the gains of the PI controller are adjusted dynamically by the adopted hybrid scheme,grey optimizer with dragon levy update(GD-LU),based on the operating conditions of the system.Here,the gains are adjusted such that the error between the reference signal and fault signal should be minimal.Thus,better dynamic performance could be attained by the present optimized PI controller.The proposed algorithm is the combined version of grey wolf optimization(GWO)and dragonfly algorithm(DA).Finally,the performance of the proposed work is compared and validated over other state-of-the-art models concerning error measures.
文摘It is well known that a SMPS (switched-mode power supply) is easy to produce strong EMI (electromagnetic interference) and fails in EMC (electromagnetic compatibility) test for its far field radiation exceeds the limits between 30-200 MHz. Based on asymmetry line antenna theory, a novel far field CM (common mode) radiation model, including an equivalent driving source, radiation structure and some key influence factors, is identified and built up for a small flyback power supply. Radiation characteristics of this model are predicted by using Ansoft HFSS software and the model effectiveness is verified by experiment. In the end, the radiation role of some key factors, such as the length of output cable, common mode impedance of AC grid, layout of cable and reflected ground, are studied using simulation in detail.
文摘The results of the implementation of an actual microgrid in the Netherlands are presented. This microgrid has photovoltaic panels as microsources, energy storage, and a flexible AC distribution interfacing system that can operate connected to the public grid or autonomously where it regulates the site's voltage and frequency. In this paper, the potential of the microgrid in improving power quality issues of the site, specifically harmonic distortions, is demonstrated. Results show that flexible AC distribution interfacing system devices were able to compensate voltage harmonics when the microgrid was operating connected to the public grid and when operating autonomously. Other tests such as short-circuit, synchronization and blackstart were also conducted. The improvement in power quality and positive results of the other tests demonstrate that a self-supporting, reliable and efficient operation of the microgrid can be achieved.
文摘The inter-line dynamic voltage restorer (IDVR) consists of several voltage source inverters connected to different independent distribution feeders with common dc bus. When one of the inverters compensates for voltage sag that appears in its feeder (voltage control mode), the other inverters pump the required power into the dc bus (power control mode). Each inverter will have both voltage and power controllers; only one controller is in use during the abnormal conditions according to its feeder state. The voltage controller uses one of the dynamic voltage restoration techniques. In this paper, the in-phase technique is applied and two types of loads are considered (constant impedance and three phase induction motor). Since the voltage restoration process may need real power injection into the distribution system, the power controller injects this power via voltage injection. This voltage injection is simulated by voltage drop across series virtual impedance. A new scheme is proposed to select the impedance value. The impedance value is selected such that the power consumed by this impedance represents the required power to be transferred without perturbing the load voltage. The performance of this system is also studied during voltage swell. A scheme for operation of multi-feeder IDVR system is proposed in this paper. Simulation results substantiate the proposed concept.
基金supported by the National Natural Science Foundation of China(Grant Nos.11075008 and 11175009)
文摘Multi-charged helium ion beam He2+ is useful for helium accelerator to obtain a higher energy with lower cost and for deuterium accelerator to avoid neutron activation during machine commissioning. An attempt to generate milliampere multi-charged helium He2+ ion beam with a 2.45 GHz electron cyclotron resonance ion source (ECRIS) was tested recently. A design using a specfic permanent magnet 2.45 GHz ECRIS (PMECRIS) source (ERCIS) is reported and the He2~ beam production ability is described. With this source, we produced a total helium beam of 40 mA at 40 kV with 180 W of net microwave power and a gas flow of less than 0.5 seem. At steady state the He2+ beam intensity is 4.4 rnA, that being the fraction of multi-charged he- lium ion beam is at approximately 11%.
基金supported by the National Natural Science Foundation of China (Grant No. 11575013)the National Basic Research Program of China (Grant No. 2014CB84550)
文摘Multiple charge ions (MCIs) are necessary for increasing the output energy of particles in accelerators. In general, MCI beams are largely produced by electron beam ion source (EBIS) [1], laser ion source (LIS) [2], or high-frequency (mostly >5 GHz) electron cyclotron resonance (ECR) ion source [3]. Among these, only ECR ion source can operate in the continuous wave (CW) mode, while EBIS and LIS only support pulses. In addition, ECR ion source with lower frequency (mostly 2.45 GHz) are required primarily for generating single charge state ions, because the corresponding ECR field (875 Gs) is not sufficiently strong for MCI generation [4].
基金supported by the Open Research Project of the Major Science and Technology Infrastructure in the Chinese Academy of Sciences-Application of Evaporative Cooling Technology in the Field of Accelerator
文摘Cooling is very important for the safe operation of an electron cyclotron resonance ion source(ECRIS),especially when the window current density is very high(up to 11 A/mm2).We proposed an innovative cooling method using evaporative cooling technology.A demonstration prototype was designed,built and tested.The on-site test results showed that the temperature of the solenoids and permanent magnets maintains well in the normal operational range of 14–18 GHz.A simple computational model was developed to predict the characteristics of the two-phase flow.The predicted temperatures agreed well with the on-site test data within 2 K.We also proposed useful design criteria.The successful operation of the system indicates the potential for broad application of evaporative cooling technology in situations in which the power intensity is very high.