The transformation of CO_(2)into cyclic carbonates via atom-economical cycloadditions with epoxides has recently attracted tremendous attention.On one hand,though many heterogeneous catalysts have been developed for t...The transformation of CO_(2)into cyclic carbonates via atom-economical cycloadditions with epoxides has recently attracted tremendous attention.On one hand,though many heterogeneous catalysts have been developed for this reaction,they typically suffer from disadvantages such as the need for severe reaction conditions,catalyst loss,and large amounts of soluble co-catalysts.On the other hand,the development of heterogeneous catalysts featuring multiple and cooperative active sites,remains challenging and desirable.In this study,we prepared a series of porous organic catalysts(POP-PBnCl-TPPMg-x)via the copolymerization metal-porphyrin compounds and phosphonium salt monomers in various ratios.The resulting materials contain both Lewis-acidic and Lewis-basic active sites.The molecular-level combination of these sites in the same polymer allows these active sites to work synergistically,giving rise to excellent performance in the cycloaddition reaction of CO_(2)with epoxides,under mild conditions(40℃ and 1 atm CO_(2))in the absence of soluble co-catalysts.POP-PBnCl-TPPMg-12 can also efficiently fixate CO_(2)under low-CO_(2)-concentration(15%v/v N2)conditions representative of typical CO_(2)compositions in industrial exhaust gases.More importantly,this catalyst shows excellent recyclability and can easily be separated and reused at least five times while maintaining its activity.In view of their heterogeneous nature and excellent catalytic performance,the obtained catalysts are promising candidates for the transformation of industrially generated CO_(2)into high value-added chemicals.展开更多
In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the pr...In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the process of crystallization of titanium silicalite zeolite. The research results revealed that at the initial stage of crystallization the interactions between silica gel and titania gel in the polymer blend could gradually lead to the formation of tiny crystal nuclei with complicated structure that could slowly grow up to form molecular sieves. Quite different from the conventional zeolites that use the acid sites as the catalytically active centers, the oxidative reactivity of the titanium silicalite zeolite was not proportional to its crystallinity and is associated with the oxidative centers of titanium contained in the zeolite.展开更多
Two conjugated polymers HXS-1 and PDFCDTBT were prepared by direct C–H activation and Suzuki polycondensation and their chemical structures were characterized by 1H NMR spectroscopy.The molecular weight of conjugated...Two conjugated polymers HXS-1 and PDFCDTBT were prepared by direct C–H activation and Suzuki polycondensation and their chemical structures were characterized by 1H NMR spectroscopy.The molecular weight of conjugated polymer synthesized by direct C–H activation is lower than the corresponding polymers prepared by Suzuki polycondensation.Conjugated polymers synthesized by direct C–H activation have considerable solubility in common organic solvents and form amorphous film.The photovoltaic property of conjugated polymers synthesized by direct C–H activation is inferior to the corresponding polymers synthesized by Suzuki polycondensation.展开更多
Biocompatible and biodegradable ε-poly-L- lysine (EPL)/poly (ε-caprolactone) (PCL) copolymer was designed and synthesized. The amphiphilic EPL-PCL copolymer could easily self-assembled into monodispersed nanop...Biocompatible and biodegradable ε-poly-L- lysine (EPL)/poly (ε-caprolactone) (PCL) copolymer was designed and synthesized. The amphiphilic EPL-PCL copolymer could easily self-assembled into monodispersed nanoparticles (NPs), which showed a broad-spectrum antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis. Interestingly, the antibacterial efficacy of the novel NPs is more potent than the cationic peptide EPL. To explore the underlying mechanism of the biodegradable cationic NPs, various possible antibacterial pathways have been validated. The NPs have been found that they can disrupt bacterial walls/ membranes and induce the increasing in reactive oxygen species and alkaline phosphatase levels. More importantly, the self-assembled NPs induced the changes in bacterial osmotic pressure, resulting in cell invagination to form holes and cause the leakage of cytoplasm. Taken together, our results suggest that the EPL-PCL NPs can be further developed to be a promising antimicrobial agent to treat infectious diseases as surfactants and emulsifiers to enhance drug encapsulation efficiency and antimicrobial activity.展开更多
文摘The transformation of CO_(2)into cyclic carbonates via atom-economical cycloadditions with epoxides has recently attracted tremendous attention.On one hand,though many heterogeneous catalysts have been developed for this reaction,they typically suffer from disadvantages such as the need for severe reaction conditions,catalyst loss,and large amounts of soluble co-catalysts.On the other hand,the development of heterogeneous catalysts featuring multiple and cooperative active sites,remains challenging and desirable.In this study,we prepared a series of porous organic catalysts(POP-PBnCl-TPPMg-x)via the copolymerization metal-porphyrin compounds and phosphonium salt monomers in various ratios.The resulting materials contain both Lewis-acidic and Lewis-basic active sites.The molecular-level combination of these sites in the same polymer allows these active sites to work synergistically,giving rise to excellent performance in the cycloaddition reaction of CO_(2)with epoxides,under mild conditions(40℃ and 1 atm CO_(2))in the absence of soluble co-catalysts.POP-PBnCl-TPPMg-12 can also efficiently fixate CO_(2)under low-CO_(2)-concentration(15%v/v N2)conditions representative of typical CO_(2)compositions in industrial exhaust gases.More importantly,this catalyst shows excellent recyclability and can easily be separated and reused at least five times while maintaining its activity.In view of their heterogeneous nature and excellent catalytic performance,the obtained catalysts are promising candidates for the transformation of industrially generated CO_(2)into high value-added chemicals.
基金supported by the NationalScience Foundation of China(2006CB202508)wewould like to extend our heartfelt thanks to the RIPP’s labo-ratories engaging in XRD and FT-IR analyses for theirenergetical support and warm assistance provided to thisresearch work.
文摘In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the process of crystallization of titanium silicalite zeolite. The research results revealed that at the initial stage of crystallization the interactions between silica gel and titania gel in the polymer blend could gradually lead to the formation of tiny crystal nuclei with complicated structure that could slowly grow up to form molecular sieves. Quite different from the conventional zeolites that use the acid sites as the catalytically active centers, the oxidative reactivity of the titanium silicalite zeolite was not proportional to its crystallinity and is associated with the oxidative centers of titanium contained in the zeolite.
基金supported by the National Basic Research Program of China(2011CB935702)the National Natural Science Foundation of China(51003006 and 21161160443)the Fundamental Research Funds for the Central Universities
文摘Two conjugated polymers HXS-1 and PDFCDTBT were prepared by direct C–H activation and Suzuki polycondensation and their chemical structures were characterized by 1H NMR spectroscopy.The molecular weight of conjugated polymer synthesized by direct C–H activation is lower than the corresponding polymers prepared by Suzuki polycondensation.Conjugated polymers synthesized by direct C–H activation have considerable solubility in common organic solvents and form amorphous film.The photovoltaic property of conjugated polymers synthesized by direct C–H activation is inferior to the corresponding polymers synthesized by Suzuki polycondensation.
基金supported by the National Basic Research Program of China(2012CB934000,2011CB933400)the National Natural Science Foundation of China(31325010,21277037)
文摘Biocompatible and biodegradable ε-poly-L- lysine (EPL)/poly (ε-caprolactone) (PCL) copolymer was designed and synthesized. The amphiphilic EPL-PCL copolymer could easily self-assembled into monodispersed nanoparticles (NPs), which showed a broad-spectrum antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis. Interestingly, the antibacterial efficacy of the novel NPs is more potent than the cationic peptide EPL. To explore the underlying mechanism of the biodegradable cationic NPs, various possible antibacterial pathways have been validated. The NPs have been found that they can disrupt bacterial walls/ membranes and induce the increasing in reactive oxygen species and alkaline phosphatase levels. More importantly, the self-assembled NPs induced the changes in bacterial osmotic pressure, resulting in cell invagination to form holes and cause the leakage of cytoplasm. Taken together, our results suggest that the EPL-PCL NPs can be further developed to be a promising antimicrobial agent to treat infectious diseases as surfactants and emulsifiers to enhance drug encapsulation efficiency and antimicrobial activity.