Improving material biocompatibility has been a continu-ous effort and remains a major goal of dialysis therapy. In this respect, vitamin E-modified copolymers have been used to produce a generation of biomaterials tha...Improving material biocompatibility has been a continu-ous effort and remains a major goal of dialysis therapy. In this respect, vitamin E-modified copolymers have been used to produce a generation of biomaterials that has offered new clinical challenges and the chance of further improving the quality of synthetic hemodialyser membranes. This mini review article describes the evo-lution of these copolymers that only recently have been adopted to develop new vitamin E-modifed polysulfone hemodialysers. Biomaterial characteristics and clinical aspects of these membranes are discussed, starting from the most recent contributions that have appeared in the literature that are of interest for the community of nephrology and dialysis specialists, as well as bioma-terial scientists.展开更多
文摘Improving material biocompatibility has been a continu-ous effort and remains a major goal of dialysis therapy. In this respect, vitamin E-modified copolymers have been used to produce a generation of biomaterials that has offered new clinical challenges and the chance of further improving the quality of synthetic hemodialyser membranes. This mini review article describes the evo-lution of these copolymers that only recently have been adopted to develop new vitamin E-modifed polysulfone hemodialysers. Biomaterial characteristics and clinical aspects of these membranes are discussed, starting from the most recent contributions that have appeared in the literature that are of interest for the community of nephrology and dialysis specialists, as well as bioma-terial scientists.