慢性乙型肝炎病毒(Hepatitis B virus,HBV)感染引起的原发性肝癌涉及多种基因、转录本和蛋白质的相互作用及调控。从单个基因的角度来看,某个基因的表达量的改变只能对肝癌发生发展的局部作出解释而无法从整体行为进行深入和全面的探索...慢性乙型肝炎病毒(Hepatitis B virus,HBV)感染引起的原发性肝癌涉及多种基因、转录本和蛋白质的相互作用及调控。从单个基因的角度来看,某个基因的表达量的改变只能对肝癌发生发展的局部作出解释而无法从整体行为进行深入和全面的探索,无法满足高度复杂性的调控研究需要。筛选乙肝相关性肝癌的基因芯片数据获取差异表达基因后,应用加权基因共表达网络分析算法构建基因共表达网络,识别与肝癌发生相关的模块,利用可视化筛选枢纽基因,并针对枢纽基因进行基因本体富集分析和初步验证。富集分析和文献挖掘一致发现,某些枢纽基因确实与多种癌症的发生与发展存在显著的关联。权重基因共表达网络分析方法被证明是一个高效的系统生物学方法,应用该方法发现了新的HBV相关性肝癌枢纽基因。经实验验证,发现枢纽基因SHARPIN促进细胞迁移。该研究对肝癌发生的调控机制以及发现HBV慢性感染导致肝癌的新型诊断标志物和(或)药物作用靶点提供了新的视野。展开更多
Gene co-expression networks provide an important tool for systems biology studies. Using microarray data from the Array Express database, we constructed an Arabidopsis gene co-expression network, termed At GGM2014, ba...Gene co-expression networks provide an important tool for systems biology studies. Using microarray data from the Array Express database, we constructed an Arabidopsis gene co-expression network, termed At GGM2014, based on the graphical Gaussian model, which contains 102,644 co-expression gene pairs among 18,068 genes. The network was grouped into 622 gene co-expression modules. These modules function in diverse house-keeping, cell cycle, development, hormone response, metabolism, and stress response pathways. We developed a tool to facilitate easy visualization of the expression patterns of these modules either in a tissue context or their regulation under different treatment conditions. The results indicate that at least six modules with tissue-specific expression pattern failed to record modular regulation under various stress conditions. This discrepancy could be best explained by the fact that experiments to study plant stress responses focused mainly on leaves and less on roots, and thus failed to recover specific regulation pattern in other tissues. Overall, the modular structures revealed by our network provide extensive information to generate testable hypotheses about diverse plant signaling pathways. At GGM2014 offers a constructive tool for plant systems biology studies.展开更多
文摘慢性乙型肝炎病毒(Hepatitis B virus,HBV)感染引起的原发性肝癌涉及多种基因、转录本和蛋白质的相互作用及调控。从单个基因的角度来看,某个基因的表达量的改变只能对肝癌发生发展的局部作出解释而无法从整体行为进行深入和全面的探索,无法满足高度复杂性的调控研究需要。筛选乙肝相关性肝癌的基因芯片数据获取差异表达基因后,应用加权基因共表达网络分析算法构建基因共表达网络,识别与肝癌发生相关的模块,利用可视化筛选枢纽基因,并针对枢纽基因进行基因本体富集分析和初步验证。富集分析和文献挖掘一致发现,某些枢纽基因确实与多种癌症的发生与发展存在显著的关联。权重基因共表达网络分析方法被证明是一个高效的系统生物学方法,应用该方法发现了新的HBV相关性肝癌枢纽基因。经实验验证,发现枢纽基因SHARPIN促进细胞迁移。该研究对肝癌发生的调控机制以及发现HBV慢性感染导致肝癌的新型诊断标志物和(或)药物作用靶点提供了新的视野。
基金supported by US National Science Foundation grants DBI-0723722 and DBI-1042344 to SPDKUC Davis funds to SPDK
文摘Gene co-expression networks provide an important tool for systems biology studies. Using microarray data from the Array Express database, we constructed an Arabidopsis gene co-expression network, termed At GGM2014, based on the graphical Gaussian model, which contains 102,644 co-expression gene pairs among 18,068 genes. The network was grouped into 622 gene co-expression modules. These modules function in diverse house-keeping, cell cycle, development, hormone response, metabolism, and stress response pathways. We developed a tool to facilitate easy visualization of the expression patterns of these modules either in a tissue context or their regulation under different treatment conditions. The results indicate that at least six modules with tissue-specific expression pattern failed to record modular regulation under various stress conditions. This discrepancy could be best explained by the fact that experiments to study plant stress responses focused mainly on leaves and less on roots, and thus failed to recover specific regulation pattern in other tissues. Overall, the modular structures revealed by our network provide extensive information to generate testable hypotheses about diverse plant signaling pathways. At GGM2014 offers a constructive tool for plant systems biology studies.