In order to f urther improve the photosensitizing activity of hypocrellin B(HB), the complex o f 5,8 di Br HB with Al 3+ was designed and synthesized in high yield. Th e complex of aluminium ion with 5,8 di Br HB is a...In order to f urther improve the photosensitizing activity of hypocrellin B(HB), the complex o f 5,8 di Br HB with Al 3+ was designed and synthesized in high yield. Th e complex of aluminium ion with 5,8 di Br HB is a new water soluble perylene quinonoid derivative with enhanced absorption over HB in the phototherapeutic wi ndow (600-900 nm). Electron paramagnetic resonance (EPR) measurement and 9,10 diphenyl anthracene bleaching methods were used to investigate the photosensiti zing activity of [Al 2(5,8 di Br HB)Cl 4] n in the prese nce of oxygen. Singlet oxygen, superoxide anion radical, hydroxyl radical can be generated by [Al 2(5,8 di Br HB)Cl 4] n photosensit ization. The results showed that the production of hydroxyl radical ( · OH) by [Al 2(5,8 di Br HB)Cl 4] n photosensitization comes from the Fenton Haber Weiss reaction and the decom position of DMPO 1O 2 adduct. Formation of H 2O 2 as one of main intermedi ates in the photogeneration of hydroxyl radical was detected by using the cataly zed oxidation of the DPD reagent by the POD enzyme method. Moreover, the experim ents of EPR spin trap and catalase enzyme excluded the effect of organoperoxide on DPD oxidization. These results further support the proposed mechanism of · OH formation.展开更多
文摘In order to f urther improve the photosensitizing activity of hypocrellin B(HB), the complex o f 5,8 di Br HB with Al 3+ was designed and synthesized in high yield. Th e complex of aluminium ion with 5,8 di Br HB is a new water soluble perylene quinonoid derivative with enhanced absorption over HB in the phototherapeutic wi ndow (600-900 nm). Electron paramagnetic resonance (EPR) measurement and 9,10 diphenyl anthracene bleaching methods were used to investigate the photosensiti zing activity of [Al 2(5,8 di Br HB)Cl 4] n in the prese nce of oxygen. Singlet oxygen, superoxide anion radical, hydroxyl radical can be generated by [Al 2(5,8 di Br HB)Cl 4] n photosensit ization. The results showed that the production of hydroxyl radical ( · OH) by [Al 2(5,8 di Br HB)Cl 4] n photosensitization comes from the Fenton Haber Weiss reaction and the decom position of DMPO 1O 2 adduct. Formation of H 2O 2 as one of main intermedi ates in the photogeneration of hydroxyl radical was detected by using the cataly zed oxidation of the DPD reagent by the POD enzyme method. Moreover, the experim ents of EPR spin trap and catalase enzyme excluded the effect of organoperoxide on DPD oxidization. These results further support the proposed mechanism of · OH formation.