For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different ...For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different as-cast microstructures on the subsequent solution-treatment process. The experimental results show that the secondary dendrite arm spacing (SDAS) of primaryα(Al), the size of eutectic Si and the volume fraction of Al?Si eutectic are reduced with increasing the cooling rate. Eutectic Si, subjected to solution treatment at 540 °C for 1 h followed by water quenching to room temperature, is completely spheroidized at cooling rate of 2.6 K/s; is partially spheroidized atcooling rate of 0.6 K/s; and is only edge-rounded at cooling rates of 0.22 and 0.12 K /s. Whilst the microhardness is also the maximum at cooling rate of 2.6 K/s. It consequently suggests that subjected to modification by high cooling rate, the eutectic Si is more readily modified, thus shortening the necessary solution time at given solution temperature, i.e., reducing the product cost.展开更多
The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Th...The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Then the eutectic silicon morphology evolution and tensile properties of the alloy samples were observed and analyzed after solution heat treatment at 540 °C for different time.The results show that the high cooling rate of the solidification process can not only reduce the solid solution heat treatment time to rapidly modify the eutectic silicon morphology,but also improve the alloy tensile properties.Specially,it is found that the disintegration,the spheroidization and coarsening of eutectic silicon of A356 alloy are completed during solution heat treatment through two stages,i.e.,at first,the disintegration and spheroidization of the eutectic silicon mainly takes place,then the eutectic silicon will coarsen.展开更多
Pre-stack depth migration velocity analysis is one of the keys to influencing the imaging quality of pre-stack migration.In this paper we cover a residual curvature velocity analysis method on angle-domain common imag...Pre-stack depth migration velocity analysis is one of the keys to influencing the imaging quality of pre-stack migration.In this paper we cover a residual curvature velocity analysis method on angle-domain common image gathers(ADCIGs) which can depict the relationship between incident angle and migration depth at imaging points and update the migration velocity.Differing from offset-domain common image gathers(ODCIGs),ADCIGs are not disturbed by the multi-path problem which contributes to imaging artifacts,thus influencing the velocity analysis.On the basis of horizontal layers,we derive the residual depth equation and also propose a velocity analysis workflow for velocity scanning.The tests to synthetic and field data prove the velocity analysis methods adopted in this paper are robust and valid.展开更多
Magnetic resonance imaging (MRI) was used to probe the structure and flow velocity within the interparticle space of a packed bed of agar beads under water-saturated condition. The images of the velocity field at th...Magnetic resonance imaging (MRI) was used to probe the structure and flow velocity within the interparticle space of a packed bed of agar beads under water-saturated condition. The images of the velocity field at three different flow rates were obtained. To determine the pore-parameter of the porous media, the internal structure of the bed was also obtained using image processing technique. The results show that the porosity of the sample is 31.28% and the fitting curve for the distribution of pore equivalent diameter follows Gaussian distribution. The velocity profiles do shift as the flow rate varies and the solution flow through the void space is not a homogeneous flow in any pores. The velocity distributions within the pore are roughly parabolic with the local maximum being near the center. About half of the velocity components are in the class of 0-1 cm/s. The frequency of lower velocity components is lower at higher flow rate, but to higher velocity components, it is just the opposite.展开更多
Angle-domain common-image gathers(ADCIGs) are the basic data in migration velocity analysis(MVA) and amplitude variation with angle(AVA) analysis. We propose a common-angle gather-generating scheme using Kirchho...Angle-domain common-image gathers(ADCIGs) are the basic data in migration velocity analysis(MVA) and amplitude variation with angle(AVA) analysis. We propose a common-angle gather-generating scheme using Kirchhoff PSDM based on the traveltime gradient field. The scheme includes three major operations:(1) to calculate the traveltime field of the source and the receiver based on the dynamic programming approach;(2) to obtain the refl ection angle according to the traveltime gradient field in the image space; and(3) to generate the ADCIGs during the migration process. Because of the computation approach, the method for generating ADCIGs is superior to conventional ray-based methods. We use the proposed ADCIGs generation method in 3D large-scale seismic data. The key points of the method are the following.(1) We use common-shot datasets for migration,(2) we load traveltimes based on the shot aperture, and(3) we use the MPI and Open Mp memory sharing to decrease the amount of input and output(I/O). Numerical examples using synthetic data suggest that the ADCIGs improve the quality of the velocity and the effectiveness of the 3D angle-gather generation scheme.展开更多
Pre-stack depth migration velocity analysis is one of the key techniques influencing image quality. As for areas with a rugged surface and complex subsurface, conventional prestack depth migration velocity analysis co...Pre-stack depth migration velocity analysis is one of the key techniques influencing image quality. As for areas with a rugged surface and complex subsurface, conventional prestack depth migration velocity analysis corrects the rugged surface to a known datum or designed surface velocity model on which to perform migration and update the velocity. We propose a rugged surface tomographic velocity inversion method based on angle-domain common image gathers by which the velocity field can be updated directly from the rugged surface without static correction for pre-stack data and improve inversion precision and efficiency. First, we introduce a method to acquire angle-domain common image gathers (ADCIGs) in rugged surface areas and then perform rugged surface tornographic velocity inversion. Tests with model and field data prove the method to be correct and effective.展开更多
基金Project(2011CB610403)support by the National Basic Research Program of ChinaProjects(51134011,51431008)supported by the National Natural Science Foundation of China+1 种基金Project(JC20120223)supported by the Fundamental Research Fund of Northwestern Polytechnical University,ChinaProject(51125002)supported by the National Funds for Distinguished Young Scientists of China
文摘For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different as-cast microstructures on the subsequent solution-treatment process. The experimental results show that the secondary dendrite arm spacing (SDAS) of primaryα(Al), the size of eutectic Si and the volume fraction of Al?Si eutectic are reduced with increasing the cooling rate. Eutectic Si, subjected to solution treatment at 540 °C for 1 h followed by water quenching to room temperature, is completely spheroidized at cooling rate of 2.6 K/s; is partially spheroidized atcooling rate of 0.6 K/s; and is only edge-rounded at cooling rates of 0.22 and 0.12 K /s. Whilst the microhardness is also the maximum at cooling rate of 2.6 K/s. It consequently suggests that subjected to modification by high cooling rate, the eutectic Si is more readily modified, thus shortening the necessary solution time at given solution temperature, i.e., reducing the product cost.
基金Project(3102014KYJD002)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(50901059,51431008,51134011)supported by the National Natural Science Foundation of China+2 种基金Project(2011CB610403)supported by the National Basic Research Program of ChinaProject(51125002)supported by the China National Funds for Distinguished Young ScientistsProject(JC20120223)supported by the Fundamental Research Fund of Northwestern Polytechnical University,China
文摘The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Then the eutectic silicon morphology evolution and tensile properties of the alloy samples were observed and analyzed after solution heat treatment at 540 °C for different time.The results show that the high cooling rate of the solidification process can not only reduce the solid solution heat treatment time to rapidly modify the eutectic silicon morphology,but also improve the alloy tensile properties.Specially,it is found that the disintegration,the spheroidization and coarsening of eutectic silicon of A356 alloy are completed during solution heat treatment through two stages,i.e.,at first,the disintegration and spheroidization of the eutectic silicon mainly takes place,then the eutectic silicon will coarsen.
基金supported by the National 863 Program (Grant No.2006AA06Z206,Sustained supported)the National Science and Technology Major Project (Grant No.2008ZX05006-004)SinoPec Group Marine Facies Research (Grant No.08370502000410)
文摘Pre-stack depth migration velocity analysis is one of the keys to influencing the imaging quality of pre-stack migration.In this paper we cover a residual curvature velocity analysis method on angle-domain common image gathers(ADCIGs) which can depict the relationship between incident angle and migration depth at imaging points and update the migration velocity.Differing from offset-domain common image gathers(ODCIGs),ADCIGs are not disturbed by the multi-path problem which contributes to imaging artifacts,thus influencing the velocity analysis.On the basis of horizontal layers,we derive the residual depth equation and also propose a velocity analysis workflow for velocity scanning.The tests to synthetic and field data prove the velocity analysis methods adopted in this paper are robust and valid.
基金Project(51374035)supported by the National Natural Science Foundation of ChinaProject(2012BAB08B02)supported by the National Science&Technology Pillar Program During the Twelfth Five-year Plan PeriodProject(NCET-13-0669)supported by the New Century Excellent Talents in University of Ministry of Education of China
文摘Magnetic resonance imaging (MRI) was used to probe the structure and flow velocity within the interparticle space of a packed bed of agar beads under water-saturated condition. The images of the velocity field at three different flow rates were obtained. To determine the pore-parameter of the porous media, the internal structure of the bed was also obtained using image processing technique. The results show that the porosity of the sample is 31.28% and the fitting curve for the distribution of pore equivalent diameter follows Gaussian distribution. The velocity profiles do shift as the flow rate varies and the solution flow through the void space is not a homogeneous flow in any pores. The velocity distributions within the pore are roughly parabolic with the local maximum being near the center. About half of the velocity components are in the class of 0-1 cm/s. The frequency of lower velocity components is lower at higher flow rate, but to higher velocity components, it is just the opposite.
基金funded by the National Basic Research Program of China(973 Program)(No.2011 CB201002)the National Natural Science Foundation of China(No.41374117)the great and special projects(No.2011ZX05003-003,2011ZX05005-005-008 HZ,and 2011ZX05006-002)
文摘Angle-domain common-image gathers(ADCIGs) are the basic data in migration velocity analysis(MVA) and amplitude variation with angle(AVA) analysis. We propose a common-angle gather-generating scheme using Kirchhoff PSDM based on the traveltime gradient field. The scheme includes three major operations:(1) to calculate the traveltime field of the source and the receiver based on the dynamic programming approach;(2) to obtain the refl ection angle according to the traveltime gradient field in the image space; and(3) to generate the ADCIGs during the migration process. Because of the computation approach, the method for generating ADCIGs is superior to conventional ray-based methods. We use the proposed ADCIGs generation method in 3D large-scale seismic data. The key points of the method are the following.(1) We use common-shot datasets for migration,(2) we load traveltimes based on the shot aperture, and(3) we use the MPI and Open Mp memory sharing to decrease the amount of input and output(I/O). Numerical examples using synthetic data suggest that the ADCIGs improve the quality of the velocity and the effectiveness of the 3D angle-gather generation scheme.
基金sponsored by the National 863 Project(No.2009AA06Z206)the Self-governed Innovative Project of China University of Petroleum(No.11CX04010A)the Doctoral Fund of National Ministry of Education(No. 20110133120001)
文摘Pre-stack depth migration velocity analysis is one of the key techniques influencing image quality. As for areas with a rugged surface and complex subsurface, conventional prestack depth migration velocity analysis corrects the rugged surface to a known datum or designed surface velocity model on which to perform migration and update the velocity. We propose a rugged surface tomographic velocity inversion method based on angle-domain common image gathers by which the velocity field can be updated directly from the rugged surface without static correction for pre-stack data and improve inversion precision and efficiency. First, we introduce a method to acquire angle-domain common image gathers (ADCIGs) in rugged surface areas and then perform rugged surface tornographic velocity inversion. Tests with model and field data prove the method to be correct and effective.