Attention networks have three principal com- ponents supported by separate subprocesses, which include alerting, orienting, and executive control (EC) networks. Efficiently and accurately extracting useful informati...Attention networks have three principal com- ponents supported by separate subprocesses, which include alerting, orienting, and executive control (EC) networks. Efficiently and accurately extracting useful information from the environment as the function of attention is pivotal to our survival. Previous brain imaging studies have examined activation patterns underlying the different attention networks in different cortical regions, yet focal differences in brain structures related to attention network components were not well understood. Therefore, in this study, voxel-based morphometry was used to investigate the relationship between gray matter volume (GMV) and different attention networks in a large young adult sample (n = 156). As a result, multiple regression analysis revealed that higher alerting scores (stronger alerting ability) were negatively significantly correlated with region gray matter volume (rGMV) cingulate cortex/precuneus), in the PCC/PreCu (posterior which might be associated with continuous maintenance of a vigilant state. Then, lower EC scores (stronger conflict resolution ability) were associated with larger rGMV in the dorsal anterior cingu- late cortex, which might be related to high-efficiency executive control processing. Together, findings of the present study provided a unique structural basis of GMV for individual differences in alerting and EC networks.展开更多
基金supported by the Graduate Students Scientific Research Innovation Projects of Chongqing(CYS2015058)National Natural Science Foundation of China(31271087+3 种基金31571137)National Outstanding Young People Planthe Program for the Top Young Talents by Chongqing,the Fundamental Research Funds for the Central Universities(SWU1509383)the Natural Science Foundation of Chongqing(cstc2015jcyj A10106)
文摘Attention networks have three principal com- ponents supported by separate subprocesses, which include alerting, orienting, and executive control (EC) networks. Efficiently and accurately extracting useful information from the environment as the function of attention is pivotal to our survival. Previous brain imaging studies have examined activation patterns underlying the different attention networks in different cortical regions, yet focal differences in brain structures related to attention network components were not well understood. Therefore, in this study, voxel-based morphometry was used to investigate the relationship between gray matter volume (GMV) and different attention networks in a large young adult sample (n = 156). As a result, multiple regression analysis revealed that higher alerting scores (stronger alerting ability) were negatively significantly correlated with region gray matter volume (rGMV) cingulate cortex/precuneus), in the PCC/PreCu (posterior which might be associated with continuous maintenance of a vigilant state. Then, lower EC scores (stronger conflict resolution ability) were associated with larger rGMV in the dorsal anterior cingu- late cortex, which might be related to high-efficiency executive control processing. Together, findings of the present study provided a unique structural basis of GMV for individual differences in alerting and EC networks.