In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communicat...In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communication efficiency.With regard to the complex and large scale NoC,simple and efficient routing nodes are the critical factors to achieve low-cost and low-congestion communication performance.This paper proposes an unbuffered switch architecture and makes detailed analysis of the mechanism of buffer in the switch architecture.According to the simulation results,the S-mesh using the unbuffered switch architecture is better in terms of the optimal performance in message latency than some typical NoC architectures,such as 2D-mesh,Fat-tree,Butterfly,Octagon and so on.The synthesis results of design compiler indicate that the unbuffered switch has obvious advantages of achieving cost and operating speed for the chips.展开更多
Analyses of spatial relationships and social interactions provide insights into the social structure of animal societies and the ways in which social preferences among and between dyads affect higher order social rela...Analyses of spatial relationships and social interactions provide insights into the social structure of animal societies and the ways in which social preferences among and between dyads affect higher order social relationships. In this paper we de- scribe the patterns of spatial associations and social interactions among adult male northern muriquis in order to evaluate the dy- namics of their social networks above the dyadic levels. Systematic observations were made on the 17 adult males present in a multi-male/multi-female group from April 2004 through February 2005, and in July 2005. Analyses of their spatial relationships identified two distinct male cliques; some adult males (called "N" males) were more connected to the females and immatures than other adult males ("MU" males), which were more connected to one another. Affiliative interactions were significantly higher among dyads belonging to the same clique than to different cliques. Although frequencies of dyadic agonistic interactions were similarly low among individuals within and between cliques, MU males appeared to be subordinate to N males. Nonetheless, there were no significant differences in the copulation rates estimated for MU males and N males. Mutual benefits of cooperation between MU and N cliques in intergroup encounters might explain their ongoing associations in the same mixed-sex group展开更多
The underlying kin structure of groups of animals may be glimpsed from patterns of spatial position or temporal as- sociation between individuals, and is presumed to facilitate inclusive fitness benefits. Such structu...The underlying kin structure of groups of animals may be glimpsed from patterns of spatial position or temporal as- sociation between individuals, and is presumed to facilitate inclusive fitness benefits. Such structure may be evident at a finer, behavioural, scale with individuals preferentially interacting with kin. We tested whether kin structure within groups of meerkats Suricata suricatta matched three forms of social interaction networks: grooming, dominance or foraging competitions. Networks of dominance interactions were positively related to networks of kinship, with close relatives engaging in dominance interactions with each other. This relationship persisted even after excluding the breeding dominant pair and when we restricted the kinship network to only include links between first order kin, which are most likely to be able to discern kin through simple rules of thumb. Conversely, we found no relationship between kinship networks and either grooming networks or networks of foraging competitions. This is surprising because a positive association between kin in a grooming network, or a negative association be- tween kin in a network of foraging competitions offers opportunities for inclusive fitness benefits. Indeed, the positive association between kin in a network of dominance interactions that we did detect does not offer clear inclusive fitness benefits to group members. We conclude that kin structure in behavioural interactions in meerkats may be driven by factors other than indirect fit- ness benefits, and that networks of cooperative behaviours such as grooming may be driven by direct benefits accruing to indi- viduals perhaps through mutualism or manipulation展开更多
基金Supported by the National High Technology Research and Development Program of China(No.2009AA01Z105)the Ministry of EducationIntel Special Foundation for Information Technology(No.MOE-INTEL-08-05)the Postdoctoral Science Foundation of China(No.20080440942,200902432)
文摘In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communication efficiency.With regard to the complex and large scale NoC,simple and efficient routing nodes are the critical factors to achieve low-cost and low-congestion communication performance.This paper proposes an unbuffered switch architecture and makes detailed analysis of the mechanism of buffer in the switch architecture.According to the simulation results,the S-mesh using the unbuffered switch architecture is better in terms of the optimal performance in message latency than some typical NoC architectures,such as 2D-mesh,Fat-tree,Butterfly,Octagon and so on.The synthesis results of design compiler indicate that the unbuffered switch has obvious advantages of achieving cost and operating speed for the chips.
文摘Analyses of spatial relationships and social interactions provide insights into the social structure of animal societies and the ways in which social preferences among and between dyads affect higher order social relationships. In this paper we de- scribe the patterns of spatial associations and social interactions among adult male northern muriquis in order to evaluate the dy- namics of their social networks above the dyadic levels. Systematic observations were made on the 17 adult males present in a multi-male/multi-female group from April 2004 through February 2005, and in July 2005. Analyses of their spatial relationships identified two distinct male cliques; some adult males (called "N" males) were more connected to the females and immatures than other adult males ("MU" males), which were more connected to one another. Affiliative interactions were significantly higher among dyads belonging to the same clique than to different cliques. Although frequencies of dyadic agonistic interactions were similarly low among individuals within and between cliques, MU males appeared to be subordinate to N males. Nonetheless, there were no significant differences in the copulation rates estimated for MU males and N males. Mutual benefits of cooperation between MU and N cliques in intergroup encounters might explain their ongoing associations in the same mixed-sex group
文摘The underlying kin structure of groups of animals may be glimpsed from patterns of spatial position or temporal as- sociation between individuals, and is presumed to facilitate inclusive fitness benefits. Such structure may be evident at a finer, behavioural, scale with individuals preferentially interacting with kin. We tested whether kin structure within groups of meerkats Suricata suricatta matched three forms of social interaction networks: grooming, dominance or foraging competitions. Networks of dominance interactions were positively related to networks of kinship, with close relatives engaging in dominance interactions with each other. This relationship persisted even after excluding the breeding dominant pair and when we restricted the kinship network to only include links between first order kin, which are most likely to be able to discern kin through simple rules of thumb. Conversely, we found no relationship between kinship networks and either grooming networks or networks of foraging competitions. This is surprising because a positive association between kin in a grooming network, or a negative association be- tween kin in a network of foraging competitions offers opportunities for inclusive fitness benefits. Indeed, the positive association between kin in a network of dominance interactions that we did detect does not offer clear inclusive fitness benefits to group members. We conclude that kin structure in behavioural interactions in meerkats may be driven by factors other than indirect fit- ness benefits, and that networks of cooperative behaviours such as grooming may be driven by direct benefits accruing to indi- viduals perhaps through mutualism or manipulation