期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种从不完备关系数据中学习PRM的方法
1
作者 李小琳 周志华 《软件学报》 EI CSCD 北大核心 2008年第1期73-81,共9页
现有的关系学习研究都是基于完备数据进行的,而现实问题中,数据通常是不完备的.提出一种从不完备关系数据中学习概率关系模型(probabilistic relational models,简称PRMs)的方法——MLTEC(maximum likelihood tree and evolutionary com... 现有的关系学习研究都是基于完备数据进行的,而现实问题中,数据通常是不完备的.提出一种从不完备关系数据中学习概率关系模型(probabilistic relational models,简称PRMs)的方法——MLTEC(maximum likelihood tree and evolutionary computing method).首先,随机填充不完备关系数据得到完备关系数据.然后从每个随机填充后的数据样本中分别生成最大似然树并作为初始PRM网络,再利用进化过程中最好的网络结构反复修正不完备数据集,最后得到概率关系模型.实验结果显示,MLTEC方法能够从不完备关系数据中学习到较好的概率关系模型. 展开更多
关键词 机器学习 关系学矾不完备数据 概率关系模型 最大似然树 进化计算
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部