We investigate the decision-making problem with a finite set of alternatives,in which the decision information takes the form of a fuzzy preference relation. We develop asimple and practical approach to obtaining the ...We investigate the decision-making problem with a finite set of alternatives,in which the decision information takes the form of a fuzzy preference relation. We develop asimple and practical approach to obtaining the priority vector of a fuzzy preference relation. Theprominent characteristic of the developed approach is that the priority vector can generally beobtained by a simple formula, which is derived from a quadratic programming model. We utilize theconsistency ratio to check the consistency of fuzzy preference relation. If the fuzzy preferencerelation is of unacceptable consistency, then we can return it to the decision maker to reconsiderstructuring a new fuzzy preference relation until the fuzzy preference relation with acceptableconsistency is obtained. We finally illustrate the priority approach by two numerical examples. Thenumerical results show that the developed approach is straightforward, effective, and can easily beperformed on a computer.展开更多
Rough set axiomatization is one aspect of rough set study to characterize rough set theory using dependable and minimal axiom groups. Thus, rough set theory can be studied by logic and axiom system methods. The classi...Rough set axiomatization is one aspect of rough set study to characterize rough set theory using dependable and minimal axiom groups. Thus, rough set theory can be studied by logic and axiom system methods. The classic rough set theory is based on equivalent relation, but rough set theory based on reflexive and transitive relation (called quasi-ordering) has wide applications in the real world. To characterize topological rough set theory, an axiom group named RT, consisting of 4 axioms, is proposed. It is proved that the axiom group reliability in characterizing rough set theory based on similar relation is reasonable. Simultaneously, the minimization of the axiom group, which requires that each axiom is an equation and each is independent, is proved. The axiom group is helpful for researching rough set theory by logic and axiom system methods.展开更多
文摘We investigate the decision-making problem with a finite set of alternatives,in which the decision information takes the form of a fuzzy preference relation. We develop asimple and practical approach to obtaining the priority vector of a fuzzy preference relation. Theprominent characteristic of the developed approach is that the priority vector can generally beobtained by a simple formula, which is derived from a quadratic programming model. We utilize theconsistency ratio to check the consistency of fuzzy preference relation. If the fuzzy preferencerelation is of unacceptable consistency, then we can return it to the decision maker to reconsiderstructuring a new fuzzy preference relation until the fuzzy preference relation with acceptableconsistency is obtained. We finally illustrate the priority approach by two numerical examples. Thenumerical results show that the developed approach is straightforward, effective, and can easily beperformed on a computer.
文摘Rough set axiomatization is one aspect of rough set study to characterize rough set theory using dependable and minimal axiom groups. Thus, rough set theory can be studied by logic and axiom system methods. The classic rough set theory is based on equivalent relation, but rough set theory based on reflexive and transitive relation (called quasi-ordering) has wide applications in the real world. To characterize topological rough set theory, an axiom group named RT, consisting of 4 axioms, is proposed. It is proved that the axiom group reliability in characterizing rough set theory based on similar relation is reasonable. Simultaneously, the minimization of the axiom group, which requires that each axiom is an equation and each is independent, is proved. The axiom group is helpful for researching rough set theory by logic and axiom system methods.