基于DFPS(Dijkstra Farthest Point Sampling)算法,得到三维模型簇的初始采样点;利用函数映射理论,计算得到两个模型间的映射关系;利用循环一致性约束,将两两模型的映射关系转化为三维模型簇的多路对应关系。实验结果表明,本算法在一定...基于DFPS(Dijkstra Farthest Point Sampling)算法,得到三维模型簇的初始采样点;利用函数映射理论,计算得到两个模型间的映射关系;利用循环一致性约束,将两两模型的映射关系转化为三维模型簇的多路对应关系。实验结果表明,本算法在一定程度上减小了三维模型间对应关系的等距误差,不仅可以实现两个模型间的对应关系计算,还适用于计算等距或近似等距的三维模型簇的对应关系。展开更多
Though touted as a potential way to realize clean ammonia synthesis,electrochemical ammonia synthesis is currently limited by its catalytic efficiency.Great effort has been made to find catalysts with improved activit...Though touted as a potential way to realize clean ammonia synthesis,electrochemical ammonia synthesis is currently limited by its catalytic efficiency.Great effort has been made to find catalysts with improved activity toward electrochemical nitrogen reduction reaction(eNRR).Rational screening of catalysts can be facilitated using the volcano relationship between catalytic activity and adsorption energy of an intermediate,namely,the activity descriptor.In this work,we proposeΔG^(*)_(NH_(2))+ΔG^(*)_(NNH)as a combinatorial descriptor,which shows better predictive power than traditional descriptors using the adsorption free energies of single intermediates.The volcano plots based on the combinatorial descriptor exhibits peak activity fixedly at the descriptor value corresponding to the formation free energy of NH3,regardless of the catalyst types;while the descriptor values correspond to the top activities for eNRR on volcano plots based on single descriptors usually vary with the types of catalysts.展开更多
文摘基于DFPS(Dijkstra Farthest Point Sampling)算法,得到三维模型簇的初始采样点;利用函数映射理论,计算得到两个模型间的映射关系;利用循环一致性约束,将两两模型的映射关系转化为三维模型簇的多路对应关系。实验结果表明,本算法在一定程度上减小了三维模型间对应关系的等距误差,不仅可以实现两个模型间的对应关系计算,还适用于计算等距或近似等距的三维模型簇的对应关系。
文摘Though touted as a potential way to realize clean ammonia synthesis,electrochemical ammonia synthesis is currently limited by its catalytic efficiency.Great effort has been made to find catalysts with improved activity toward electrochemical nitrogen reduction reaction(eNRR).Rational screening of catalysts can be facilitated using the volcano relationship between catalytic activity and adsorption energy of an intermediate,namely,the activity descriptor.In this work,we proposeΔG^(*)_(NH_(2))+ΔG^(*)_(NNH)as a combinatorial descriptor,which shows better predictive power than traditional descriptors using the adsorption free energies of single intermediates.The volcano plots based on the combinatorial descriptor exhibits peak activity fixedly at the descriptor value corresponding to the formation free energy of NH3,regardless of the catalyst types;while the descriptor values correspond to the top activities for eNRR on volcano plots based on single descriptors usually vary with the types of catalysts.