In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indi...In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.展开更多
In order to deal with the complex association relationships between classes in an object-oriented software system,a novel approach for identifying refactoring opportunities is proposed.The approach can be used to dete...In order to deal with the complex association relationships between classes in an object-oriented software system,a novel approach for identifying refactoring opportunities is proposed.The approach can be used to detect complex and duplicated many-to-many association relationships in source code,and to provide guidance for further refactoring.In the approach,source code is first transformed to an abstract syntax tree from which all data members of each class are extracted,then each class is characterized in connection with a set of association classes saving its data members.Next,classes in common associations are obtained by comparing different association classes sets in integrated analysis.Finally,on condition of pre-defined thresholds,all class sets in candidate for refactoring and their common association classes are saved and exported.This approach is tested on 4 projects.The results show that the precision is over 96%when the threshold is 3,and 100%when the threshold is 4.Meanwhile,this approach has good execution efficiency as the execution time taken for a project with more than 500 classes is less than 4 s,which also indicates that it can be applied to projects of different scales to identify their refactoring opportunities effectively.展开更多
基金Project(50774095) supported by the National Natural Science Foundation of ChinaProject(200449) supported by the National Outstanding Doctoral Dissertations Special Funds of China
文摘In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.
文摘In order to deal with the complex association relationships between classes in an object-oriented software system,a novel approach for identifying refactoring opportunities is proposed.The approach can be used to detect complex and duplicated many-to-many association relationships in source code,and to provide guidance for further refactoring.In the approach,source code is first transformed to an abstract syntax tree from which all data members of each class are extracted,then each class is characterized in connection with a set of association classes saving its data members.Next,classes in common associations are obtained by comparing different association classes sets in integrated analysis.Finally,on condition of pre-defined thresholds,all class sets in candidate for refactoring and their common association classes are saved and exported.This approach is tested on 4 projects.The results show that the precision is over 96%when the threshold is 3,and 100%when the threshold is 4.Meanwhile,this approach has good execution efficiency as the execution time taken for a project with more than 500 classes is less than 4 s,which also indicates that it can be applied to projects of different scales to identify their refactoring opportunities effectively.