期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于关联分类算法的医学图像数据挖掘 被引量:1
1
作者 邓薇薇 卢延鑫 《国际医学寄生虫病杂志》 CAS 2012年第3期174-177,共4页
目的利用关联分类算法,构造医学图像分类器,对未知类型的脑肿瘤图像进行自动判别和分类,以帮助临床医生进行脑疾病的诊断和治疗。方法对医学图像经过预处理后进行特征提取,再将提取的特征离散化后放到事务数据库中作为关联分类规则... 目的利用关联分类算法,构造医学图像分类器,对未知类型的脑肿瘤图像进行自动判别和分类,以帮助临床医生进行脑疾病的诊断和治疗。方法对医学图像经过预处理后进行特征提取,再将提取的特征离散化后放到事务数据库中作为关联分类规则的输入,然后利用改进的Apriori算法构造医学图像分类器。结果构造了医学图像分类器,用已知类型的图像训练分类器挖掘满足约束条件的关联规则,然后利用发现的关联规则对未知类型的医学图像进行分类以判断脑肿瘤的良恶性。结论利用关联分类算法可以有效地挖掘医学图像特征,进而构造图像分类器,实现脑肿瘤良恶性的自动判别。 展开更多
关键词 数据挖掘 关联分类算法 医学图像
原文传递
结合高斯混合模型的关联分类离散化算法研究 被引量:6
2
作者 吴辰文 郭叔瑾 李晨阳 《小型微型计算机系统》 CSCD 北大核心 2018年第4期732-737,共6页
大多数以规则为基础的分类不能直接处理像血压这一类连续数据.离散化数据预处理可以将连续的数据转变成分类格式.现有的离散化算法没有考虑到数据集中连续变量的多模态分类密度,这可能会降低以规则为基础的分类器性能.提出一种新的基于... 大多数以规则为基础的分类不能直接处理像血压这一类连续数据.离散化数据预处理可以将连续的数据转变成分类格式.现有的离散化算法没有考虑到数据集中连续变量的多模态分类密度,这可能会降低以规则为基础的分类器性能.提出一种新的基于高斯混合模型的离散化算法(Discretization Algorithm based on Gaussian Mixture Model,DAGMM),通过考虑连续变量的多峰分布以保留数据的原始模式.DAGMM算法的有效性通过4个公开可用的医疗数据集进行验证.实验结果表明,在产生的规则数和关联分类算法的分类准确度方面,DAGMM算法优于其它6个静态离散化算法.因此,在临床专家系统中运用此方法,有潜力提高以规则为基础的分类器的性能. 展开更多
关键词 离散化 关联分类算法 规则归纳算法 高斯混合模型
下载PDF
使用多支持度的关联规则分类算法 被引量:2
3
作者 黄亚东 刘渊 《计算机应用与软件》 2017年第9期246-252,共7页
传统关联分类算法使用单一最小项目支持度挖掘关联规则,导致稀有项关联规则无法被发现,从而影响分类的准确性和实用性。提出一种多支持度关联规则分类算法MS-CBAR(Multiple Supports-Classification Based on Association Rules),将多... 传统关联分类算法使用单一最小项目支持度挖掘关联规则,导致稀有项关联规则无法被发现,从而影响分类的准确性和实用性。提出一种多支持度关联规则分类算法MS-CBAR(Multiple Supports-Classification Based on Association Rules),将多最小项目支持度模型应用于关联分类,以有效挖掘稀有项。该算法为数据库中的规则项提供了用户可定义的最小项目支持度。MS-CBAR算法使用项的最小项支持度阈值、类的最小类支持度值和规则项的最小支持度值决定分类规则是否频繁。生成分类规则集后,使用最高优先度规则覆盖法基于规则集建立分类器。实验表明,所提算法在包含稀有项目及稀有类的数据集中准确率高于传统关联分类算法及其相关算法,表现更稳定。 展开更多
关键词 数据挖掘 多最小项目支持度 基于关联分类算法 MS-CBAR
下载PDF
挖掘重要项集的关联文本分类 被引量:2
4
作者 蔡金凤 白清源 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期544-550,共7页
针对在关联规则分类算法的构造分类器阶段中只考虑特征词是否存在,忽略了文本特征权重的问题,基于关联规则的文本分类方法(ARC-BC)的基础上提出一种可以提高关联文本分类准确率的ISARC(ItemSet Significance-based ARC)算法.该算法利用... 针对在关联规则分类算法的构造分类器阶段中只考虑特征词是否存在,忽略了文本特征权重的问题,基于关联规则的文本分类方法(ARC-BC)的基础上提出一种可以提高关联文本分类准确率的ISARC(ItemSet Significance-based ARC)算法.该算法利用特征项权重定义了k-项集重要度,通过挖掘重要项集来产生关联规则,并考虑提升度对待分类文本的影响.实验结果表明,挖掘重要项集的ISARC算法可以提高关联文本分类的准确率. 展开更多
关键词 文本分类 基于关联规则的分类算法 权重 重要项集
下载PDF
一种基于关联规则的网络软件缺陷预测方法 被引量:1
5
作者 胡柳 邓杰 +1 位作者 赵正伟 李瑞 《信息技术与网络安全》 2018年第4期41-44,共4页
针对网络软件缺陷预测中缺陷之间的显性关联关系和隐性关联关系,为提高网络软件缺陷预测的精确度和效率,基于现有的软件缺陷数据集,提出一种基于关联规则的网络软件缺陷预测方法。首先采用随机方法从美国国家航空航天局NASA的软件缺陷... 针对网络软件缺陷预测中缺陷之间的显性关联关系和隐性关联关系,为提高网络软件缺陷预测的精确度和效率,基于现有的软件缺陷数据集,提出一种基于关联规则的网络软件缺陷预测方法。首先采用随机方法从美国国家航空航天局NASA的软件缺陷数据库中提取用于分类和测试的数据集,利用关联规则方法中Apriori算法对数据集进行关联规则生成和关联分类器的构建,并与BP神经网络方法的预测结果进行对比。结果表明,基于关联规则方法能够在小样本数据集中提高网络软件缺陷预测的精确度和有效性。 展开更多
关键词 关联规则 网络软件缺陷 关联分类算法
下载PDF
一种基于关联规则的网络软件缺陷预测方法
6
作者 徐思婕 《电子技术与软件工程》 2020年第24期48-49,共2页
本文为提高网络软件缺陷预测的精确度和效率,基于现有的软件缺陷数据集,提出一种基于关联规则的网络软件缺陷预测方法。首先采用随机方法从美国国家航空航天局NASA的软件缺陷数据库中提取用于分类和测试的数据集,利用关联规则方法中Apri... 本文为提高网络软件缺陷预测的精确度和效率,基于现有的软件缺陷数据集,提出一种基于关联规则的网络软件缺陷预测方法。首先采用随机方法从美国国家航空航天局NASA的软件缺陷数据库中提取用于分类和测试的数据集,利用关联规则方法中Apriori算法对数据集进行关联规则生成和关联分类器的构建,并与BP神经网络方法的预测结果进行对比。结果表明,基于关联规则方法能够在小样本数据集中提高网络软件缺陷预测的精确度和有效性。 展开更多
关键词 关联规则 网络软件缺陷 关联分类算法
下载PDF
合成金字塔预测模型中内含的改进型CBA预测方法
7
作者 杨炳儒 周谆 侯伟 《计算机应用研究》 CSCD 北大核心 2009年第12期4617-4620,共4页
蛋白质二级结构预测问题,是生物信息学领域中最为重要的任务之一,历经三十多年的研究,已取得了一些进展,尤其是近来集成预测模型与混合预测模型的引入,为预测精度带来了一定程度的提高,然而其离从二级结构推导三级结构的目标,仍然存在... 蛋白质二级结构预测问题,是生物信息学领域中最为重要的任务之一,历经三十多年的研究,已取得了一些进展,尤其是近来集成预测模型与混合预测模型的引入,为预测精度带来了一定程度的提高,然而其离从二级结构推导三级结构的目标,仍然存在很大差距。为了有效提高蛋白质二级结构预测精度,以KDTICM理论的扩展性研究与KDD*模型为基础,使用基于KDD*模型的关联分析蛋白质二级结构预测方法KAAPRO,提出一种基于支持度与可信度的复杂距离度量的CBA(classification based on association)算法,并以该算法为核心构建逐步求精、多层递阶的合成金字塔模型,该模型整体贯穿领域知识,并采用因果细胞自动机选择有效物化属性。在对偏alpha、beta型蛋白质的预测实验中,改进型CBA算法较好地完成了对结构特征不明显氨基酸的预测,获得了较优的预测效果。 展开更多
关键词 关联规则 蛋白质二级结构预测 KDD* 合成金字塔模型 基于关联分类算法
下载PDF
基于数据挖掘的银行全成本分析 被引量:4
8
作者 任秀丽 史忠植 《计算机应用研究》 CSCD 北大核心 2007年第9期53-54,57,共3页
针对银行全成本分析的业务特点和数据挖掘各种算法的应用特征,提出了基于关联规则的分类算法在银行全成本分析系统中的分析模型。将此模型与其他机器学习分类算法进行实验比较,得出此算法在该领域的最佳效果,所挖掘出的规则得到银行工... 针对银行全成本分析的业务特点和数据挖掘各种算法的应用特征,提出了基于关联规则的分类算法在银行全成本分析系统中的分析模型。将此模型与其他机器学习分类算法进行实验比较,得出此算法在该领域的最佳效果,所挖掘出的规则得到银行工作人员的肯定。 展开更多
关键词 银行全成本分析 数据挖掘 基于关联规则的分类算法
下载PDF
Relevance-based content extraction of HTML documents
9
作者 吴麒 陈兴蜀 +1 位作者 朱锴 王春晖 《Journal of Central South University》 SCIE EI CAS 2012年第7期1921-1926,共6页
Content extraction of HTML pages is the basis of the web page clustering and information retrieval,so it is necessary to eliminate cluttered information and very important to extract content of pages accurately.A nove... Content extraction of HTML pages is the basis of the web page clustering and information retrieval,so it is necessary to eliminate cluttered information and very important to extract content of pages accurately.A novel and accurate solution for extracting content of HTML pages was proposed.First of all,the HTML page is parsed into DOM object and the IDs of all leaf nodes are generated.Secondly,the score of each leaf node is calculated and the score is adjusted according to the relationship with neighbors.Finally,the information blocks are found according to the definition,and a universal classification algorithm is used to identify the content blocks.The experimental results show that the algorithm can extract content effectively and accurately,and the recall rate and precision are 96.5% and 93.8%,respectively. 展开更多
关键词 content extraction DOM NODE RELEVANCE information block
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部