随着各种社交媒体不断兴起,社交网络中消息传播所带来的安全问题显得愈发突出。其中,虚假消息的传播给网络空间的安全带来了极大威胁。为了在尽可能小地改变网络拓扑结构的前提下抑制虚假消息在网络空间的肆意传播,提出了一种基于影响...随着各种社交媒体不断兴起,社交网络中消息传播所带来的安全问题显得愈发突出。其中,虚假消息的传播给网络空间的安全带来了极大威胁。为了在尽可能小地改变网络拓扑结构的前提下抑制虚假消息在网络空间的肆意传播,提出了一种基于影响力最大化的抑制虚假消息传播的方法。首先基于信息级联预测模型对消息传播进行预测,提出基于节点影响力最大化思想的两种算法Louvain Clustered Local Degree Centrality(LCLD)和Random Maximum Degree(RMD),得到影响力最大的节点集合;然后利用TextCNN对虚假消息进行分类识别,过滤掉节点集合中的少量关键节点。修改后的传播网络重新通过预测模型进行消息传播预测,结果虚假消息的传播相比于网络修改前得到了明显抑制。最后在真实数据集BuzzFeedNews上展开验证,首先通过实验验证基于信息级联的预测模型可以较准确地拟合实际传播;再将修改后的网络输入预测模型进行预测,结果显示虚假消息传播可得到抑制,表明采用影响力最大化算法删减少量包含虚假消息的节点可有效抑制虚假消息的传播,从而验证了所提方法的有效性。展开更多
影响力最大化问题在社交网络中有着广泛的应用,一般地可以将社交网络抽象为静态图,影响力最大化问题是指在图中找出k个最有影响力的顶点,使得信息最大化传播.近年来对此问题的研究主要基于静态图,但是在现实中某些特定网络不可简单地被...影响力最大化问题在社交网络中有着广泛的应用,一般地可以将社交网络抽象为静态图,影响力最大化问题是指在图中找出k个最有影响力的顶点,使得信息最大化传播.近年来对此问题的研究主要基于静态图,但是在现实中某些特定网络不可简单地被抽象为静态图,如社交网络及路网中节点间只在某些特定时间存在联系,即节点间的联系是具有时序性的.因此,本文研究了时序图影响力最大化问题,即在时序图上寻找k个顶点使得信息在特定的时间段内最大化传播.传播模型的选择和节点间传播概率的计算是影响力最大化问题的基础,由于基于静态图的IC(Independent Cascade model)传播模型无法应用于时序图,因此本文首先对IC模型进行改进,并提出了ICT(Independent Cascade model on Temporal graph)传播模型,使信息可以通过ICT传播模型在时序图上进行传播.而后通过改进PageRank算法来进行计算节点间的传播概率.然后在此基础上将时序图影响力最大化问题分为两步来进行实现.第一步首先研究时序图节点影响力的计算,并提出了用来计算节点影响力的SIC(Single Node Influence Computation)算法,然后通过对时序图中节点联系时序性这一特性的研究提出了一种改进算法ISIC(Improved SIC).第二步是在第一步结果的基础上来寻找k个种子节点,首先提出了一种基本的时序图影响力最大化算法BIMT(Basic Method for IMTG).但BIMT难以高效解决大规模时序图影响力最大化问题,因此通过优化节点边际效应的计算时间,提出了高效的AIMT(Advanced Method for IMTG)算法,然后通过避免某些节点边际效应的重复计算,对AIMT算法进行改进,从而提出了IMIT(Improved Method for IMTG)算法.最后通过大量实验验证了AIMT和IMIT两种算法高效性和扩展性,相比于BIMT算法,AIMT和IMIT可以更加快速地解决大规模时序图影响力最大化问题.展开更多
文摘随着各种社交媒体不断兴起,社交网络中消息传播所带来的安全问题显得愈发突出。其中,虚假消息的传播给网络空间的安全带来了极大威胁。为了在尽可能小地改变网络拓扑结构的前提下抑制虚假消息在网络空间的肆意传播,提出了一种基于影响力最大化的抑制虚假消息传播的方法。首先基于信息级联预测模型对消息传播进行预测,提出基于节点影响力最大化思想的两种算法Louvain Clustered Local Degree Centrality(LCLD)和Random Maximum Degree(RMD),得到影响力最大的节点集合;然后利用TextCNN对虚假消息进行分类识别,过滤掉节点集合中的少量关键节点。修改后的传播网络重新通过预测模型进行消息传播预测,结果虚假消息的传播相比于网络修改前得到了明显抑制。最后在真实数据集BuzzFeedNews上展开验证,首先通过实验验证基于信息级联的预测模型可以较准确地拟合实际传播;再将修改后的网络输入预测模型进行预测,结果显示虚假消息传播可得到抑制,表明采用影响力最大化算法删减少量包含虚假消息的节点可有效抑制虚假消息的传播,从而验证了所提方法的有效性。
文摘针对度中心性等方法选择种子节点时未考虑节点间传播概率及邻居拓扑连接的影响,提出局部传播中心性LPC(Local Propagation Centrality)的概念。为减少贪心算法时间复杂度高且不可扩展的问题,提出一种新的启发式算法IMLPC(Influence Maximization Algorithm based on LPC)。该算法通过计算每个节点的LPC,依次选择影响力最大的节点。实验结果表明,IMLPC的影响范围和运行时间较现有启发式算法相比有显著提升。在不同数据集下,IMLPC影响范围稳定、可扩展性好。
文摘影响力最大化问题在社交网络中有着广泛的应用,一般地可以将社交网络抽象为静态图,影响力最大化问题是指在图中找出k个最有影响力的顶点,使得信息最大化传播.近年来对此问题的研究主要基于静态图,但是在现实中某些特定网络不可简单地被抽象为静态图,如社交网络及路网中节点间只在某些特定时间存在联系,即节点间的联系是具有时序性的.因此,本文研究了时序图影响力最大化问题,即在时序图上寻找k个顶点使得信息在特定的时间段内最大化传播.传播模型的选择和节点间传播概率的计算是影响力最大化问题的基础,由于基于静态图的IC(Independent Cascade model)传播模型无法应用于时序图,因此本文首先对IC模型进行改进,并提出了ICT(Independent Cascade model on Temporal graph)传播模型,使信息可以通过ICT传播模型在时序图上进行传播.而后通过改进PageRank算法来进行计算节点间的传播概率.然后在此基础上将时序图影响力最大化问题分为两步来进行实现.第一步首先研究时序图节点影响力的计算,并提出了用来计算节点影响力的SIC(Single Node Influence Computation)算法,然后通过对时序图中节点联系时序性这一特性的研究提出了一种改进算法ISIC(Improved SIC).第二步是在第一步结果的基础上来寻找k个种子节点,首先提出了一种基本的时序图影响力最大化算法BIMT(Basic Method for IMTG).但BIMT难以高效解决大规模时序图影响力最大化问题,因此通过优化节点边际效应的计算时间,提出了高效的AIMT(Advanced Method for IMTG)算法,然后通过避免某些节点边际效应的重复计算,对AIMT算法进行改进,从而提出了IMIT(Improved Method for IMTG)算法.最后通过大量实验验证了AIMT和IMIT两种算法高效性和扩展性,相比于BIMT算法,AIMT和IMIT可以更加快速地解决大规模时序图影响力最大化问题.