In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indi...In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.展开更多
Classical Mach-number(M) scaling in compressible wall turbulence was suggested by van Driest(Van Driest E R.Turbulent boundary layers in compressible fluids.J Aerodynamics Science,1951,18(3):145-160) and Huang et al.(...Classical Mach-number(M) scaling in compressible wall turbulence was suggested by van Driest(Van Driest E R.Turbulent boundary layers in compressible fluids.J Aerodynamics Science,1951,18(3):145-160) and Huang et al.(Huang P G,Coleman G N,Bradshaw P.Compressible turbulent channel flows:DNS results and modeling.J Fluid Mech,1995,305:185-218).Using a concept of velocity-vorticity correlation structure(VVCS),defined by high correlation regions in a field of two-point cross-correlation coefficient between a velocity and a vorticity component,we have discovered a limiting VVCS as the closest streamwise vortex structure to the wall,which provides a concrete Morkovin scaling summarizing all compressibility effects.Specifically,when the height and mean velocity of the limiting VVCS are used as the units for the length scale and the velocity,all geometrical measures in the spanwise and normal directions,as well as the mean velocity and fluctuation(r.m.s) profiles become M-independent.The results are validated by direct numerical simulations(DNS) of compressible channel flows with M up to 3.Furthermore,a quantitative model is found for the M-scaling in terms of the wall density,which is also validated by the DNS data.These findings yield a geometrical interpretation of the semi-local transformation(Huang et al.,1995),and a conclusion that the location and the thermodynamic properties associated with the limiting VVCS determine the M-effects on supersonic wall-bounded flows.展开更多
基金Project(50774095) supported by the National Natural Science Foundation of ChinaProject(200449) supported by the National Outstanding Doctoral Dissertations Special Funds of China
文摘In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.
基金supported by the National Nature Science Foundation of China (Grant Nos.90716008,10572004 and 11172006)the National Basic Research Program of China (Grant No.2009CB724100)
文摘Classical Mach-number(M) scaling in compressible wall turbulence was suggested by van Driest(Van Driest E R.Turbulent boundary layers in compressible fluids.J Aerodynamics Science,1951,18(3):145-160) and Huang et al.(Huang P G,Coleman G N,Bradshaw P.Compressible turbulent channel flows:DNS results and modeling.J Fluid Mech,1995,305:185-218).Using a concept of velocity-vorticity correlation structure(VVCS),defined by high correlation regions in a field of two-point cross-correlation coefficient between a velocity and a vorticity component,we have discovered a limiting VVCS as the closest streamwise vortex structure to the wall,which provides a concrete Morkovin scaling summarizing all compressibility effects.Specifically,when the height and mean velocity of the limiting VVCS are used as the units for the length scale and the velocity,all geometrical measures in the spanwise and normal directions,as well as the mean velocity and fluctuation(r.m.s) profiles become M-independent.The results are validated by direct numerical simulations(DNS) of compressible channel flows with M up to 3.Furthermore,a quantitative model is found for the M-scaling in terms of the wall density,which is also validated by the DNS data.These findings yield a geometrical interpretation of the semi-local transformation(Huang et al.,1995),and a conclusion that the location and the thermodynamic properties associated with the limiting VVCS determine the M-effects on supersonic wall-bounded flows.