To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer developme...To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer development, and magnetic encoders, and other sensors, in which the STM32 F103 chip is used as the main control chip, and the DRV8323 is a brushless motor drive chip. The principle of field-oriented control(FOC) brushless motor drive is elaborated.Meanwhile, the drive and control system design is completed from both hardware and software aspects. Finally, the PID algorithm is used for the closed-loop speed test of the robot joint. The experimental result shows that the designed robot joints and control system run smoothly and reliably, have the characteristics of modularization and miniaturization, and are suitable for the control of micro-service robots and manipulators.展开更多
A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Compar...A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.展开更多
In recent years, researchers have been actively pursuing research into developing robots that can be useful in many fields of industry (e.g., service, medical, and aging care). Such robots must be safe and flexible ...In recent years, researchers have been actively pursuing research into developing robots that can be useful in many fields of industry (e.g., service, medical, and aging care). Such robots must be safe and flexible so that they can coexist with people. Pneumatic actuators are useful for achieving this goal because they are lightweight units with natural compliance. Our research focuses on joint angle control for a pneumatically driven musculoskeletal model. In such a model, we use a one-degree-of-freedom joint model and a five-fingered robot hand as test beds. These models are driven by low pressure-driven pneumatic actuators, and mimic the mechanism of the human hand and musculoskeletal structure, which has an antagonistic muscle pair for each joint. We demonstrated a biologically inspired control method using the parameters antagonistic muscle ratio and antagonistic muscle activity. The concept of the method is based on coordination of an antagonistic muscle pair using these parameters. We have investigated the validity of the proposed method both theoretically and experimentally, developed a feedback control system, and conducted joint angle control by implementing the test beds.展开更多
基金Project(51805368) supported by the National Natural Science Foundation of ChinaProject(2018QNRC001) supported by the Young Elite Scientists Sponsorship Program by China Association for Science and TechnologyProject(DMETKF2021017) supported by Open Fund of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,China。
文摘To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer development, and magnetic encoders, and other sensors, in which the STM32 F103 chip is used as the main control chip, and the DRV8323 is a brushless motor drive chip. The principle of field-oriented control(FOC) brushless motor drive is elaborated.Meanwhile, the drive and control system design is completed from both hardware and software aspects. Finally, the PID algorithm is used for the closed-loop speed test of the robot joint. The experimental result shows that the designed robot joints and control system run smoothly and reliably, have the characteristics of modularization and miniaturization, and are suitable for the control of micro-service robots and manipulators.
基金Project(2006AA04Z228) supported by the National High-Tech Research and Development Program of ChinaProject(PCSIRT) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.
文摘In recent years, researchers have been actively pursuing research into developing robots that can be useful in many fields of industry (e.g., service, medical, and aging care). Such robots must be safe and flexible so that they can coexist with people. Pneumatic actuators are useful for achieving this goal because they are lightweight units with natural compliance. Our research focuses on joint angle control for a pneumatically driven musculoskeletal model. In such a model, we use a one-degree-of-freedom joint model and a five-fingered robot hand as test beds. These models are driven by low pressure-driven pneumatic actuators, and mimic the mechanism of the human hand and musculoskeletal structure, which has an antagonistic muscle pair for each joint. We demonstrated a biologically inspired control method using the parameters antagonistic muscle ratio and antagonistic muscle activity. The concept of the method is based on coordination of an antagonistic muscle pair using these parameters. We have investigated the validity of the proposed method both theoretically and experimentally, developed a feedback control system, and conducted joint angle control by implementing the test beds.