对作者关键词进行价值细分研究,有助于识别学科高价值研究热点主题,帮助研究者们精确把握高价值研究主题和学科研究前沿。本文引入营销领域客户价值细分RFM(recency,frequency,monetary)模型,对各个指标进行动态加权,多次实验后,形成多...对作者关键词进行价值细分研究,有助于识别学科高价值研究热点主题,帮助研究者们精确把握高价值研究主题和学科研究前沿。本文引入营销领域客户价值细分RFM(recency,frequency,monetary)模型,对各个指标进行动态加权,多次实验后,形成多组关键词价值细分结果;从关键词生命周期的角度,结合医学领域的生存分析方法,使用Kaplan-Meier曲线和Logrank检验验证,识别出最优价值细分结果;依据帕累托原则和聚类算法得到高价值热点主题。数据源选择CSSCI(Chinese Social Sciences Citation Index)收录的图情档领域期刊论文,对1998-2019年的题录数据进行实验。相较于已有的热点主题识别方法,本文的识别结果考虑了关键词的价值属性和分类,较好地识别了高价值热点主题。展开更多
文摘对作者关键词进行价值细分研究,有助于识别学科高价值研究热点主题,帮助研究者们精确把握高价值研究主题和学科研究前沿。本文引入营销领域客户价值细分RFM(recency,frequency,monetary)模型,对各个指标进行动态加权,多次实验后,形成多组关键词价值细分结果;从关键词生命周期的角度,结合医学领域的生存分析方法,使用Kaplan-Meier曲线和Logrank检验验证,识别出最优价值细分结果;依据帕累托原则和聚类算法得到高价值热点主题。数据源选择CSSCI(Chinese Social Sciences Citation Index)收录的图情档领域期刊论文,对1998-2019年的题录数据进行实验。相较于已有的热点主题识别方法,本文的识别结果考虑了关键词的价值属性和分类,较好地识别了高价值热点主题。