An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client co...An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client computer with functions ofsignal acquisition and processing, and a host computer in the central control room.Thesignal acquisition module of the client computer can collect the running parameters fromvarious monitoring terminals in real-time.The DSP high-speed data processing system ofthe main control module can quickly achieve the numerical calculation for the collectedsignal.The signal modulation and signal demodulation are completed by the frequencyshift keying circuit and phase-locked loop frequency circuit, respectively.Finally, the signalis sent to the host computer for logic estimation and diagnostic analysis using the networkcommunication technology, which is helpful for technicians and managers to control therunning state of equipment.展开更多
Energy harvesting is an area of substantial and increasing research attention, and vibration-based devices dominate this research. The primary goal of most researchers is producing maximum electrical output from the h...Energy harvesting is an area of substantial and increasing research attention, and vibration-based devices dominate this research. The primary goal of most researchers is producing maximum electrical output from the harvester systems. However, there have been little metrological considerations for circumstances under which the energy harvester devices are characterized. This makes comparison of different device prototypes very difficult. It is the focus of this paper to highlight the need for metrological considerations to energy harvesting so that a universal metric can be developed. An attempt is also made to discuss the critical parameters that are essential in establishing an international standard on vibration-based energy harvesting. Finally, a simple standard for energy harvesting is proposed.展开更多
Recently, the barrier coverage was proposed and received much attention in wireless sensor network (WSN), and the degree of the barrier coverage, one of the critical parameters of WSN, must be re-studied due to the di...Recently, the barrier coverage was proposed and received much attention in wireless sensor network (WSN), and the degree of the barrier coverage, one of the critical parameters of WSN, must be re-studied due to the difference between the barrier coverage and blanket coverage. In this paper, we propose two algorithms, namely, local tree based no-way and back (LTNWB) algorithm and sensor minimum cut sets (SMCS) algorithm, for the opened and closed belt regions to determine the degree of the barrier coverage of WSN. Our main objective is to minimize the complexity of these algorithms. For the opened belt region, both algorithms work well, and for the closed belt region, they will still come into existence while some restricted conditions are taken into consideration. Finally, the simulation results demonstrate the feasibility of the proposed algorithms.展开更多
基金Supported by the National Hi-tech Research and Development Program of China(2007AA04Z415)the Hunan Province and Xiangtan City Natural Science Joint Foundation(09JJ8005)the Torch Program Project of Hunan Province(2008SH044)
文摘An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client computer with functions ofsignal acquisition and processing, and a host computer in the central control room.Thesignal acquisition module of the client computer can collect the running parameters fromvarious monitoring terminals in real-time.The DSP high-speed data processing system ofthe main control module can quickly achieve the numerical calculation for the collectedsignal.The signal modulation and signal demodulation are completed by the frequencyshift keying circuit and phase-locked loop frequency circuit, respectively.Finally, the signalis sent to the host computer for logic estimation and diagnostic analysis using the networkcommunication technology, which is helpful for technicians and managers to control therunning state of equipment.
文摘Energy harvesting is an area of substantial and increasing research attention, and vibration-based devices dominate this research. The primary goal of most researchers is producing maximum electrical output from the harvester systems. However, there have been little metrological considerations for circumstances under which the energy harvester devices are characterized. This makes comparison of different device prototypes very difficult. It is the focus of this paper to highlight the need for metrological considerations to energy harvesting so that a universal metric can be developed. An attempt is also made to discuss the critical parameters that are essential in establishing an international standard on vibration-based energy harvesting. Finally, a simple standard for energy harvesting is proposed.
文摘Recently, the barrier coverage was proposed and received much attention in wireless sensor network (WSN), and the degree of the barrier coverage, one of the critical parameters of WSN, must be re-studied due to the difference between the barrier coverage and blanket coverage. In this paper, we propose two algorithms, namely, local tree based no-way and back (LTNWB) algorithm and sensor minimum cut sets (SMCS) algorithm, for the opened and closed belt regions to determine the degree of the barrier coverage of WSN. Our main objective is to minimize the complexity of these algorithms. For the opened belt region, both algorithms work well, and for the closed belt region, they will still come into existence while some restricted conditions are taken into consideration. Finally, the simulation results demonstrate the feasibility of the proposed algorithms.