以光流法为依据,提出了一种基于光流方向信息熵(entropy of oriented optical flow,EOF)统计的方法捕捉微表情关键帧.首先,采用改进的Horn-Schunck光流法提取视频流中相邻两帧图像的微表情运动特征;其次,采用阈值分析法筛选出投影速度...以光流法为依据,提出了一种基于光流方向信息熵(entropy of oriented optical flow,EOF)统计的方法捕捉微表情关键帧.首先,采用改进的Horn-Schunck光流法提取视频流中相邻两帧图像的微表情运动特征;其次,采用阈值分析法筛选出投影速度模值较大的光流向量;之后,采用图像信息熵统计光流变化角度,进而得到视频序列的方向信息熵向量,通过对熵向量的分析,实现微表情关键帧捕捉;最后,本实验采用芬兰奥卢大学的SMIC微表情数据库和中国科学院心理研究所傅小兰的CASME微表情数据库作为实验样本,通过与传统的帧差法比较,证明了本文提出的算法优于帧差法,能够较好地表现出微表情变化趋势,为微表情识别提供基础.展开更多
文摘以光流法为依据,提出了一种基于光流方向信息熵(entropy of oriented optical flow,EOF)统计的方法捕捉微表情关键帧.首先,采用改进的Horn-Schunck光流法提取视频流中相邻两帧图像的微表情运动特征;其次,采用阈值分析法筛选出投影速度模值较大的光流向量;之后,采用图像信息熵统计光流变化角度,进而得到视频序列的方向信息熵向量,通过对熵向量的分析,实现微表情关键帧捕捉;最后,本实验采用芬兰奥卢大学的SMIC微表情数据库和中国科学院心理研究所傅小兰的CASME微表情数据库作为实验样本,通过与传统的帧差法比较,证明了本文提出的算法优于帧差法,能够较好地表现出微表情变化趋势,为微表情识别提供基础.