期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于SVM和主动学习的图像检索方法 被引量:6
1
作者 王新建 罗光春 +2 位作者 秦科 陈爱国 赖云一 《计算机应用研究》 CSCD 北大核心 2016年第12期3836-3838,3846,共4页
为了提高图像检索的速度和准确性,提出了一种基于SVM和主动学习的图像检索方法。该方法分为两个阶段:第一阶段用K-means聚类算法在图像数据库中找出代表性样本,有效地缩小了目标图像的查找范围;第二阶段通过对未标注样本与分类边界之间... 为了提高图像检索的速度和准确性,提出了一种基于SVM和主动学习的图像检索方法。该方法分为两个阶段:第一阶段用K-means聚类算法在图像数据库中找出代表性样本,有效地缩小了目标图像的查找范围;第二阶段通过对未标注样本与分类边界之间的距离以及其近邻密度进行综合评价,选出最有价值的关键性样本作为训练样本,使得分类器可以通过较少的反馈次数快速达到较高的准确性。实验表明,该算法可以有效提高图像的检索性能。 展开更多
关键词 图像检索 SVM 主动学习 K—means 代表性样本 关键性样本
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部