期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多模态时空特征表示及其在行为识别中的应用 被引量:2
1
作者 施海勇 侯振杰 +1 位作者 巢新 钟卓锟 《中国图象图形学报》 CSCD 北大核心 2023年第4期1041-1055,共15页
目的在人体行为识别研究中,利用多模态方法将深度数据与骨骼数据相融合,可有效提高动作的识别率。针对深度图像信息数据量大、冗余度高等问题,提出一种通过获取关键时程信息动作帧序列降低冗余的算法,即质心运动路径松弛算法,并根据不... 目的在人体行为识别研究中,利用多模态方法将深度数据与骨骼数据相融合,可有效提高动作的识别率。针对深度图像信息数据量大、冗余度高等问题,提出一种通过获取关键时程信息动作帧序列降低冗余的算法,即质心运动路径松弛算法,并根据不同模态数据的特点,提出一种新的时空特征表示方法。方法质心运动路径松弛算法根据质心在相邻帧之间的运动距离,计算图像差分后获得的活跃部分的相似系数,然后剔除掉相似度高的帧,获得足以表达行为的关键时程信息。根据图像动态部分的变化特性、人体各部分在运动中的协同性和局部显著性特征构建一种新的时空特征表示方法。结果在MSR-Action3D数据集上对本文方法的效果进行验证。在3个子集中进行交叉验证的平均分类识别率为95.7432%,分别比Multi-fused,CovP3DJ,D3D-LSTM(densely connected 3DCNN and long short-term memory),Joint Subset Selection方法高2.4432%,4.7632%,0.3432%,0.2132%。本文方法在使用完整数据集的扩展实验中进行交叉验证的分类识别率为93.0403%,具有很好的鲁棒性。结论实验结果表明,本文提出的去冗余算法在降低冗余后提升了识别效果,提取的特征之间具有相关性低的特点,在组合识别中具有良好的互补性,有效提高了分类识别的精确度。 展开更多
关键词 行为识别 质心运动 关键时程信息 时空特征表示 多模态融合
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部