针对现有语音关键词检测方法定位精度低的问题,提出了一种基于多尺度距离矩阵的语音关键词检测与细粒度定位方法(spoken term detection and fine-grained localization method based on multi-scale distance matrices,MF-STD)。该方...针对现有语音关键词检测方法定位精度低的问题,提出了一种基于多尺度距离矩阵的语音关键词检测与细粒度定位方法(spoken term detection and fine-grained localization method based on multi-scale distance matrices,MF-STD)。该方法首先利用残差卷积网络提取特征并构建距离矩阵以建模输入之间的相关性;其次通过多尺度分割和解耦头学习不同尺度下的定位信息;最后根据多尺度加权定位损失、置信度损失和分类损失优化模型,实现对关键词存在性和时域边界的细粒度预测。在LibriSpeech数据集上的实验结果表明,MF-STD在集内词的检测中,精准率和交并比分别达到97.1%和88.6%;在集外词的检测中,精准率和交并比分别达到96.7%和88.2%。与现有的语音关键词检测与定位方法相比,MF-STD的检测准确率和定位精度显著提升,充分证明该方法的先进性,也证明了多尺度特征建模与细粒度定位约束在语音关键词检测任务中的有效性。展开更多
使用骨盆X光片诊断发育性髋关节发育不良(Developmental Dysplasia of the Hip,DDH)要求准确地标注髋关节关键点,而深度学习方法能作为可靠的辅助工具。针对骨盆片拍摄姿势和拍摄距离多样化问题,本文基于U-Net提出了RKD-UNet来检测髋关...使用骨盆X光片诊断发育性髋关节发育不良(Developmental Dysplasia of the Hip,DDH)要求准确地标注髋关节关键点,而深度学习方法能作为可靠的辅助工具。针对骨盆片拍摄姿势和拍摄距离多样化问题,本文基于U-Net提出了RKD-UNet来检测髋关节关键点。该模型使用残差块改进U-Net的卷积层和skip-connection路径,并将坐标注意力引入到编码器中以增强模型对关键点邻域的特征提取能力。在编码器顶部使用卷积和ASPP模块构成Bridge块,以[3,6,9]的空洞率融合不同尺度的特征信息并提升模型的感受野。本文使用包含骨盆正位片、蛙位片、下肢全长片和术后骨盆片的数据集训练和测试模型。RKD-UNet实现了3.19±2.19 px的平均关键点检测误差和2.83°±2.59°的平均髋臼角测量误差。对正常、轻度、中度和重度脱位案例诊断的F1分数分别达到89.6、77.1、57.9和94.1,高于医生的手动诊断结果。实验结果表明,RKD-UNet能准确检测髋关节关键点并辅助医生诊断DDH。展开更多
文摘针对现有语音关键词检测方法定位精度低的问题,提出了一种基于多尺度距离矩阵的语音关键词检测与细粒度定位方法(spoken term detection and fine-grained localization method based on multi-scale distance matrices,MF-STD)。该方法首先利用残差卷积网络提取特征并构建距离矩阵以建模输入之间的相关性;其次通过多尺度分割和解耦头学习不同尺度下的定位信息;最后根据多尺度加权定位损失、置信度损失和分类损失优化模型,实现对关键词存在性和时域边界的细粒度预测。在LibriSpeech数据集上的实验结果表明,MF-STD在集内词的检测中,精准率和交并比分别达到97.1%和88.6%;在集外词的检测中,精准率和交并比分别达到96.7%和88.2%。与现有的语音关键词检测与定位方法相比,MF-STD的检测准确率和定位精度显著提升,充分证明该方法的先进性,也证明了多尺度特征建模与细粒度定位约束在语音关键词检测任务中的有效性。
文摘使用骨盆X光片诊断发育性髋关节发育不良(Developmental Dysplasia of the Hip,DDH)要求准确地标注髋关节关键点,而深度学习方法能作为可靠的辅助工具。针对骨盆片拍摄姿势和拍摄距离多样化问题,本文基于U-Net提出了RKD-UNet来检测髋关节关键点。该模型使用残差块改进U-Net的卷积层和skip-connection路径,并将坐标注意力引入到编码器中以增强模型对关键点邻域的特征提取能力。在编码器顶部使用卷积和ASPP模块构成Bridge块,以[3,6,9]的空洞率融合不同尺度的特征信息并提升模型的感受野。本文使用包含骨盆正位片、蛙位片、下肢全长片和术后骨盆片的数据集训练和测试模型。RKD-UNet实现了3.19±2.19 px的平均关键点检测误差和2.83°±2.59°的平均髋臼角测量误差。对正常、轻度、中度和重度脱位案例诊断的F1分数分别达到89.6、77.1、57.9和94.1,高于医生的手动诊断结果。实验结果表明,RKD-UNet能准确检测髋关节关键点并辅助医生诊断DDH。