期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
以HJ-CCD影像为基础的冬小麦孕穗期关键苗情参数遥感定量反演
被引量:
9
1
作者
谭昌伟
杨昕
+3 位作者
罗明
马昌
严翔
陈亭亭
《中国农业科学》
CAS
CSCD
北大核心
2015年第13期2518-2527,共10页
【目的】应用卫星遥感数据可以及时获取大田种植作物"面状"苗情信息,准确反映作物群体苗情状况及其趋势,服务于产量预报和实际生产。进一步深化冬小麦关键期苗情遥感反演机理与方法,为大田种植管理提供及时信息。【方法】结合...
【目的】应用卫星遥感数据可以及时获取大田种植作物"面状"苗情信息,准确反映作物群体苗情状况及其趋势,服务于产量预报和实际生产。进一步深化冬小麦关键期苗情遥感反演机理与方法,为大田种植管理提供及时信息。【方法】结合2011—2013年定点观测试验,以环境减灾卫星HJ-CCD数据为遥感影像源,着重研究样本实验区孕穗期冬小麦关键苗情参数与籽粒品质参数和产量间及其与卫星遥感变量间的定量关系,进一步增强遥感反演的机理性和重演性,与地面实测结果一起建立模型共同分析,提高遥感反演的定量化水平和可信度;以相关性最高为原则,筛选反演孕穗期冬小麦叶面积指数、生物量、SPAD以及叶片含氮量的敏感卫星遥感变量,并以2013年数据为建模样本、2011年和2012年数据为验证样本,分别构建及评价基于HJ-CCD影像遥感变量孕穗期叶面积指数、生物量、SPAD和叶片含氮量监测模型。【结果】冬小麦处于孕穗期,植被衰减指数(PSRI)可作为反演冬小麦叶面积指数、SPAD和叶片含氮量的敏感遥感变量,比值植被指数(RVI)可作为反演冬小麦生物量的敏感遥感变量,所构建的遥感反演模型是可靠的,且精度较高,尤其利用PSRI反演叶片含氮量最可靠。模型的决定系数(R2)分别为0.651、0.585、0.630和0.675,均方根误差(RMSE)分别为1.344、4.62、0.618%和2 804.3kg·hm-2。以此为依据,为表征该研究的实际农学意义,对冬小麦不同等级的关键苗情参数进行遥感反演并制图分析,从而量化表达了冬小麦关键苗情参数区域空间分布,不仅有助于制定冬小麦田间补救措施和水肥资源调配方案,而且为农业政策的制订和粮食贸易提供决策依据。【结论】构建的冬小麦孕穗期关键苗情参数遥感反演模型是可行的,为大田生产提供了一种快速、便捷、费用低廉的大面积作物苗情参数提取方法,可支持农业研究者、涉农部门领导和种植管理者获取及时有效的农情信息。
展开更多
关键词
遥感
HJ-CCD影像
小麦孕穗期
关键苗情参数
反演模型
下载PDF
职称材料
题名
以HJ-CCD影像为基础的冬小麦孕穗期关键苗情参数遥感定量反演
被引量:
9
1
作者
谭昌伟
杨昕
罗明
马昌
严翔
陈亭亭
机构
扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心
出处
《中国农业科学》
CAS
CSCD
北大核心
2015年第13期2518-2527,共10页
基金
国家自然科学基金(41271415)
江苏高校优势学科建设工程(PAPD)
文摘
【目的】应用卫星遥感数据可以及时获取大田种植作物"面状"苗情信息,准确反映作物群体苗情状况及其趋势,服务于产量预报和实际生产。进一步深化冬小麦关键期苗情遥感反演机理与方法,为大田种植管理提供及时信息。【方法】结合2011—2013年定点观测试验,以环境减灾卫星HJ-CCD数据为遥感影像源,着重研究样本实验区孕穗期冬小麦关键苗情参数与籽粒品质参数和产量间及其与卫星遥感变量间的定量关系,进一步增强遥感反演的机理性和重演性,与地面实测结果一起建立模型共同分析,提高遥感反演的定量化水平和可信度;以相关性最高为原则,筛选反演孕穗期冬小麦叶面积指数、生物量、SPAD以及叶片含氮量的敏感卫星遥感变量,并以2013年数据为建模样本、2011年和2012年数据为验证样本,分别构建及评价基于HJ-CCD影像遥感变量孕穗期叶面积指数、生物量、SPAD和叶片含氮量监测模型。【结果】冬小麦处于孕穗期,植被衰减指数(PSRI)可作为反演冬小麦叶面积指数、SPAD和叶片含氮量的敏感遥感变量,比值植被指数(RVI)可作为反演冬小麦生物量的敏感遥感变量,所构建的遥感反演模型是可靠的,且精度较高,尤其利用PSRI反演叶片含氮量最可靠。模型的决定系数(R2)分别为0.651、0.585、0.630和0.675,均方根误差(RMSE)分别为1.344、4.62、0.618%和2 804.3kg·hm-2。以此为依据,为表征该研究的实际农学意义,对冬小麦不同等级的关键苗情参数进行遥感反演并制图分析,从而量化表达了冬小麦关键苗情参数区域空间分布,不仅有助于制定冬小麦田间补救措施和水肥资源调配方案,而且为农业政策的制订和粮食贸易提供决策依据。【结论】构建的冬小麦孕穗期关键苗情参数遥感反演模型是可行的,为大田生产提供了一种快速、便捷、费用低廉的大面积作物苗情参数提取方法,可支持农业研究者、涉农部门领导和种植管理者获取及时有效的农情信息。
关键词
遥感
HJ-CCD影像
小麦孕穗期
关键苗情参数
反演模型
Keywords
remote sensing
HJ-CCD images
booting stage
key seedling condition parameters
inversion models
分类号
S512.11 [农业科学—作物学]
S127 [农业科学—农业基础科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
以HJ-CCD影像为基础的冬小麦孕穗期关键苗情参数遥感定量反演
谭昌伟
杨昕
罗明
马昌
严翔
陈亭亭
《中国农业科学》
CAS
CSCD
北大核心
2015
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部