本文结合分位数回归技术,基于删失回归模型,把Claeskens和Hjort的传统兴趣信息准侧(focused information criterion,FIC)扩展到兴趣向量的情形,提出扩展的兴趣信息准则(extended focused information criterion,E-FIC),有效解决了同时...本文结合分位数回归技术,基于删失回归模型,把Claeskens和Hjort的传统兴趣信息准侧(focused information criterion,FIC)扩展到兴趣向量的情形,提出扩展的兴趣信息准则(extended focused information criterion,E-FIC),有效解决了同时针对多个兴趣参数的平均估计问题,并且对删失响应变量的不同水平分位数进行建模,以全面反映响应变量分布特征,有效克服异常值和厚尾模型误差的影响.基于扩展的兴趣信息准则给出参数的平均估计方法,证明估计的渐近性质.通过Monte Carlo随机模拟试验比较所提估计方法和最小二乘方法在有限样本量下的表现,用所提方法对原发性胆汁性肝硬化数据集进行数据分析.展开更多
文摘本文结合分位数回归技术,基于删失回归模型,把Claeskens和Hjort的传统兴趣信息准侧(focused information criterion,FIC)扩展到兴趣向量的情形,提出扩展的兴趣信息准则(extended focused information criterion,E-FIC),有效解决了同时针对多个兴趣参数的平均估计问题,并且对删失响应变量的不同水平分位数进行建模,以全面反映响应变量分布特征,有效克服异常值和厚尾模型误差的影响.基于扩展的兴趣信息准则给出参数的平均估计方法,证明估计的渐近性质.通过Monte Carlo随机模拟试验比较所提估计方法和最小二乘方法在有限样本量下的表现,用所提方法对原发性胆汁性肝硬化数据集进行数据分析.