设 X 是一实的 Banach 空间,T : X → X 是一 Lipschitz 的增生算子。本文证明了具误差 的 Ishikawa 迭代序列强收敛到方程 x + Tx = f 的唯一解;并得一个一般的收敛估计式。 若 T : X → X 是一 Lipschitz 的强增生算子,则具...设 X 是一实的 Banach 空间,T : X → X 是一 Lipschitz 的增生算子。本文证明了具误差 的 Ishikawa 迭代序列强收敛到方程 x + Tx = f 的唯一解;并得一个一般的收敛估计式。 若 T : X → X 是一 Lipschitz 的强增生算子,则具误差的 Ishikawa 迭代序列强收敛到方 程 Tx = f 的唯一解。本文结果推广和发展了现有的相应结果。展开更多
文摘设 X 是一实的 Banach 空间,T : X → X 是一 Lipschitz 的增生算子。本文证明了具误差 的 Ishikawa 迭代序列强收敛到方程 x + Tx = f 的唯一解;并得一个一般的收敛估计式。 若 T : X → X 是一 Lipschitz 的强增生算子,则具误差的 Ishikawa 迭代序列强收敛到方 程 Tx = f 的唯一解。本文结果推广和发展了现有的相应结果。