期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
死亡水平影响因素的典则分析
1
作者 张东峰 周晓彬 +2 位作者 张超英 纪新强 李瑜玲 《青岛医学院学报》 1996年第4期306-308,共3页
(1)目的探讨一个地区的社会经济,文化教育,人口因素对死亡水平的影响。(2)方法资料来自于河南省第3次人口普查资料,以9项社会经济,文化教育及人口指标为一组变量(x),4项死亡率为另一组变量(y)用典则分析的方法把社... (1)目的探讨一个地区的社会经济,文化教育,人口因素对死亡水平的影响。(2)方法资料来自于河南省第3次人口普查资料,以9项社会经济,文化教育及人口指标为一组变量(x),4项死亡率为另一组变量(y)用典则分析的方法把社会经济等指标与死亡率之昌的关系充分地揭示出来,典则相关系数的检验用似然比法,资料处理用SAS软件包在AST-386型微机上完成。(3)结果3个有显著性的典则相关系数分别为0.7665, 展开更多
关键词 死亡率 社会经济因素 人口 典则分析
下载PDF
Regularized canonical correlation analysis with unlabeled data 被引量:1
2
作者 Xi-chuan ZHOU Hai-bin SHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第4期504-511,共8页
In standard canonical correlation analysis (CCA), the data from definite datasets are used to estimate their canonical correlation. In real applications, for example in bilingual text retrieval, it may have a great po... In standard canonical correlation analysis (CCA), the data from definite datasets are used to estimate their canonical correlation. In real applications, for example in bilingual text retrieval, it may have a great portion of data that we do not know which set it belongs to. This part of data is called unlabeled data, while the rest from definite datasets is called labeled data. We propose a novel method called regularized canonical correlation analysis (RCCA), which makes use of both labeled and unlabeled samples. Specifically, we learn to approximate canonical correlation as if all data were labeled. Then, we describe a generalization of RCCA for the multi-set situation. Experiments on four real world datasets, Yeast, Cloud, Iris, and Haberman, demonstrate that, by incorporating the unlabeled data points, the accuracy of correlation coefficients can be improved by over 30%. 展开更多
关键词 Canonical correlation analysis (CCA) REGULARIZATION Unlabeled data Generalized canonical correlation analysis(GCCA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部