[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvemen...[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvement of soil quality in continuous-cropping sugarcane field. [Method] The soil in the experimental region is latosolic red soil which was planted with sugarcane for 11 years continuously, and 8 treatments including sole application of chemical fertilizers, sole application of organ- ic fertilizer, and combined application of organic fertilizer and chemical fertilizers were designed according to different fertilization measures. The effects of different fertilization treatments on soil microbial biomass, soil enzyme activities and related fertility factors were determined. [Result} Different fertilization treatments all showed soil microbial biomass N, C and P and activities of soil acid phosphatase, catalase, sucrase and urease higher than the CK. Soil microbial biomass N increased by 5.56%-67.13%, soil microbial biomass C increased by 4.01%-20.40%, and soil mi- crobial biomass P increased by 6.39%-67.02%. The activity of acid phosphatase was improved by 12.96%-35.19%, the activity of catalase was improved by 18.24% -78.93%, the activity of sucrase was improved by 3.00%-42.00%, and the activity of urease was improved by 1.21%-23.43%. However, the soil nutrients of different fertilization treatments increased non-significantly (P〉0.05). Soil microbial biomass N, C and P and activities of acid phosphatase, catalase and urease were in significant (P〈0.05) or very significant correlation (P〈0.01) with contents of soil rapidly available P, rapidly available K and total N. [Conclusion] The evaluation of improvement of soil fertility in continuous-cropping sugarcane field using soil microbial biomass and enzyme activities as indexes is more comprehensive and sensitive.展开更多
[Objective] The aim was to study the effects of combined of manure and fertilizer on the content of nutrients in purplish soil as well as release dynamics of enzyme activities.[Method] The effects of manure and fertil...[Objective] The aim was to study the effects of combined of manure and fertilizer on the content of nutrients in purplish soil as well as release dynamics of enzyme activities.[Method] The effects of manure and fertilizer application on the content of AOM,NH+4-N and NO-3-N in soil as well as release dynamics of enzyme activities were studied by means of simulation culturing.[Result] In the treatments of combined application of simulation culture experiment,the content of active organic matters,NH+4-N,NO-3-N and soil enzyme activities changed dynamically,which showed a shape of inverted "S" with two or more peaks.Compared with the treatment of fertilization,their peaks were relatively flat and occurred relatively late,while the treatment of fertilization had only one but the highest peak.The content of active organic matter came to top around 10 d in the order of cow5fertilizer5pig5fertilizer5cow manurepig manurefertilizer Ⅰfertilizer Ⅱ;the activity of urease came to top around 10 d in all treatments and in the order of pig manurecow5fertilizer5cow manurefertilizer Ⅰfertilizer Ⅱpig5fertilizer5.The activity of saccharase was in the order of pig5fertilizer5pig manurecow5fertilizer5cow manureCKfertilizer Ⅱfertilizer Ⅰ.[Conclusion] The study could provide the theoretical basis for reasonable application of manure and fertilizer.展开更多
The nutritional composition of Pneumatophorus japonicus sauce was analyzed and compared with other fish sauces. The sodium chloride content of the sample Pneumatophorus japonicus sauce was greater than 25%. The total ...The nutritional composition of Pneumatophorus japonicus sauce was analyzed and compared with other fish sauces. The sodium chloride content of the sample Pneumatophorus japonicus sauce was greater than 25%. The total soluble nitrogen content was greater than 2.1 g/100mL, and the amino nitrogen content was greater than 1.2 g/100mL. The mineral content was abundant in the Pneumatophorus japonicus sauce, the calcium content and the magnesium content were 391.50±0.03 and 375.00±0.02 mg/L respectively, much higher than those in other samples. The iron content and the zinc content were 22.30±0.04 and 2.80±0.03 mg/L, respectively. The content of free amino acids was 5 552.17 mg/100mL, the content of essential amino acids was 2 666.00 mg/100mL,The taurine content was 113.05 mg/100mL. The antioxidant activity of the fermentation broth was 90.48%, while the TCA soluble peptide content was 29.04 mg/mL. Pneumatophorus japonicus sauce is nutritionally rich and has special physiological activity.展开更多
Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fract...Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fractions and soil nutrients in the first rotation site and the second rotation site of Chinese fir plantation and the native broad-leaved forest were investigated and analyzed by soil sampling at the Huitong Experimental Station of Forestry Ecology (at latitude 26°48′N and longitude 109°30′E under a subtropical climate conditions), Chinese Academy of Sciences in March, 2004. The results showed that values of ASOM fractions for the Chinese fir plantations were lower than those for the broad-leaved forest. The contents of easily oxidisable carbon (EOC), microbial biomass carbon (MBC), water soluble carbohydrate (WSC) and water-soluble organic carbon (WSOC) for the first rotation of Chinese fir plantation were 35.9%, 13.7%, 87.8% and 50.9% higher than those for the second rotation of Chinese fir plantation, and were 15.8%, 47.3%, 38.1% and 30.2% separately lower than those for the broad-leaved forest. For the three investigated forest sites, the contents of MBC and WSOC had a larger decrease, followed by WSC, and the change of EOC was least. Moreover, soil physico-chemistry properties such as soil nutrients in Chinese fir plantation were lower than those in broad-leaved forest. It suggested that soil fertility declined after Chinese fir plantation replaced native broad-leaved forest through continuous artificial plantation.展开更多
Cordyceps ophioglossoides is a valuable traditional medicinal material.We have found that intracellular polysaccharide(IPS) is the major biologically active ingredient in Cordyceps ophioglossoides.This study is the fi...Cordyceps ophioglossoides is a valuable traditional medicinal material.We have found that intracellular polysaccharide(IPS) is the major biologically active ingredient in Cordyceps ophioglossoides.This study is the first time to optimize the yield of IPS from Cordyceps ophioglossoides.The optimal medium for IPS production consists of glucose 54.50 g·L·1,yeast powder 25.50 g·L·1,NaH2PO4 0.4 g·L·1 and K2HPO4 0.4 g·L·1.The suggested culture conditions are 24 ℃,initial pH 4.5 with a rotary speed of 120 r·min·1 for 168 h.The yield of IPS is 737.93 mg·L·1,which is 50% higher than the yield under the conditions prior to optimization.The anti-oxidative activities of IPS in Cordyceps ophioglossoides L2 are also characterized using various in vitro assay.The anti-oxidative activity may explain the reason why IPS from Cordyceps ophioglossoides can be used to fight against neurodegenerative dis-eases and menopausal symptoms.展开更多
In this study,Cordyceps militaris strain QC04 was cultivated in oat,rice,and wheat media for different time periods.We studied the effects of different cultivation media and periods on the fruiting body biomass and ac...In this study,Cordyceps militaris strain QC04 was cultivated in oat,rice,and wheat media for different time periods.We studied the effects of different cultivation media and periods on the fruiting body biomass and active components of C.militaris,aiming to provide reference for the production and utilization of C.militaris QC04.The results showed that the dry weight of the fruiting body of C.militaris was the highest in the wheat medium,moderate in the oat medium,and the lowest in the rice medium.The content of cordycepin and adenosine in the fruiting body and residual medium was higher in the oat and rice media than in the rice medium.The content of cordycepin and adenosine in fruiting body and residual medium peaked on day 55.Furthermore,the content of cordycepin in the fruiting body was lower than that in the residual medium,while the content of adenosine showed an opposite trend.The content of cordycepic acid in the rice medium was generally higher than that in the oat and wheat media.As the cultivation period extended,the fruiting body biomass declined and the content of cordycepic acid in the fruiting body increased slightly.展开更多
Gracilaria asiatica, being highly efficient in nutrient absorption, is cultivated in sea cucumber ponds to remove nutrients such as nitrogen and phosphate. It was cultured in a laboratory simulating field conditions, ...Gracilaria asiatica, being highly efficient in nutrient absorption, is cultivated in sea cucumber ponds to remove nutrients such as nitrogen and phosphate. It was cultured in a laboratory simulating field conditions, and its nutrient absorption was measured to evaluate effects of environmental conditions. Ammonia nitrogen (AN), nitrate nitrogen (NN), total inorganic nitrogen (TIN), and soluble reactive phosphorus (SRP) uptake rate and removal efficiency were determined in a 4~2 factorial design experiment in water temperatures (T) at 15~C and 25~C, algae biomass (AB) at 0.5 g/L and 1.0 g/L, total inorganic nitrogen (TIN) at 30 ~tmol/L and 60 ~tmol/L, and soluble reactive phosphorus (SRP) at 3 and 6 ~tmol/L. AB and ambient TIN or SRP levels significantly affected uptake rate and removal efficiency of AN, NN, TIN, and SRP (P〈0.001). G. asiatica in AB of 0.5 g/L showed higher uptake rate and lower removal efficiency relative to that with AB of 1.0 g/L. Nitrogen and phosphorus uptake rate rose with increasing ambient nutrient concentrations; nutrient removal efficiency decreased at higher environmental nutrient concentrations. The algae preferred to absorb AN to NN. Uptake rates of AN, NN, and SRP were significantly affected by temperature (P〈0.001); uptake rate was higher for the 25~C group than for the 15~C group at the initial experiment stage. Only the removal efficiency of AN and SRP showed a significant difference between the two temperature groups (P〈0.01). The four factors had significant interactive effects on absorption of N and P, implying that G. asiatica has great bioremedial potential in sea cucumber culture ponds.展开更多
Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Exper...Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium.展开更多
In order to provide the reference of improving the nutritional quality traits in carotenoids and screening its resources of wheat varieties, 185 wheat varieties or lines were selected as materials to test the caroteno...In order to provide the reference of improving the nutritional quality traits in carotenoids and screening its resources of wheat varieties, 185 wheat varieties or lines were selected as materials to test the carotenoids content, lipoxygenase activity, whiteness, yellowness and some other quality traits of whole mill in wheat.The results showed that there were highly significant variations in lipoxygenase activity,carotenoids content, whiteness and yellowness among those sample of wheat varieties; carotenoids content was significantly and positively correlated with yellowness.Cluster analysis was performed based on carotenoids content clustered all the varieties or lines into three major groups. Additionally, carotenoids were discussed in the application of nutritional quality improvement in wheat.展开更多
During January–February 2008, a severe ice storm caused significant damages to forests in southern China, creating canopy gaps and changing soil nutrient availability and enzyme activity. To understand the relationsh...During January–February 2008, a severe ice storm caused significant damages to forests in southern China, creating canopy gaps and changing soil nutrient availability and enzyme activity. To understand the relationships between gap size, changes in the soil environment and the effects that these changes have on soil processes, we investigated the effects of gap size on soil chemical and biological properties in the forest gaps in a Cunninghamia lanceolata stand in northern Guangdong Province, southern China. Ten naturally created gaps, five large(80–100 m^2) and five small(30–40 m^2), were selected in the stand of C.lanceolata. The large gaps showed a significant increase in light transmission ratio and air and soil temperatures and a decline in soil moisture, organic matter,N and P compared with the small gaps and the adjacent canopy-covered plots in the 0–10 cm soil. The differences in organic matter and nutrient levels found between the large and small gaps and the canopy-covered plots may be related to changes in environmental conditions. This indicated rapid litter decomposition and increased nutrient leaching in the large gaps. Moreover, the lowest levels of catalase, acid phosphatase and urease activities occurred in large gaps because of the decline in their soil fertility. Large forest gaps may have a region of poor fertility, reducing soil nutrient availability and enzyme activity within the C.lanceolata stand.展开更多
Elevated CO 2 may reduce the tolerance of Nilaparvata lugen (N. lugens) to adverse environmental factors through the biological and physiological degeneration of N. lugens. In an artificial climate box, under 375 and ...Elevated CO 2 may reduce the tolerance of Nilaparvata lugen (N. lugens) to adverse environmental factors through the biological and physiological degeneration of N. lugens. In an artificial climate box, under 375 and 750 μL L 1 CO 2 levels, the rice stems nutrient content, the nutrient content and enzyme activities of N. lugens nymph fed on rice seedlings exposed to ambient and elevated CO 2 were studied. The results showed that rice stems had significantly higher protein and total amino acid levels under ambient than elevated CO 2 levels. Nymphs had significantly higher protein levels in the ambient CO 2 treatment, while their glucose levels were significantly lower under ambient CO 2 conditions. Significantly higher trypsin activity was observed in nymphs grown in elevated CO 2 . Significantly lower activities of the protective enzymes total superoxide dismutase and catalase were observed in the nymphs under ambient CO 2 . Meanwhile, the activity of the detoxification enzyme glutathione S-transferase was significantly higher in the ambient CO 2 treatment. Measuring how energy and resources were allocated to enzymes in N. lugens nymphs under elevated CO 2 conditions can provide a more meaningful evaluation of their metabolic tolerances to adverse climatic conditions.展开更多
With increasing demand for irrigation water, agricultural scientists and planners pay more attention to the utilization of diluted seawater as an alternative source for irrigation of crops. A greenhouse pot experiment...With increasing demand for irrigation water, agricultural scientists and planners pay more attention to the utilization of diluted seawater as an alternative source for irrigation of crops. A greenhouse pot experiment was conducted to study how seawater stress(SS) affects growth, water content, cationic accumulation, and active ingredients in leaves of Aloe vera after 30 d of growth in nutrient media with 0%(control), 22%(22% SS), and 42%(42% SS) seawater stress. Results indicated the SS did not change dry biomass of leaves and stems, but gradually decreased biomass allocation to roots with increasing seawater stress. Na+and Cl-in A. vera plant did not increase obviously with a big increase in seawater percentage due to low transpiration of Aloe vera. 42% SS decreased N concentration in most plant organs, but did not change or increased P concentration. Seawater stress tended to decrease concentrations of K+and Ca2+in A. vera. However, seawater salinity tended to increase the concentrations of aloin concentration in top(young) and middle leaves, and there was no significant effect of both stresses on aloin concentration in base(old) leaves. The 42% SS treatment decreased polysaccharide concentrations only in the base leaves, but not in top and middle leaves. In summary, supplying suitably diluted seawater for 30 d could increase the qualities and value of A. vera, without substantial effects on shoot dry biomass production.展开更多
基金Supported by the grands from National Sugarcane Industry Technology System(CARS-20-3-5)Science and Technology Development Foundation of Guangxi Academy of Agricultural Science(GNK 2015JZ31 GNK 2013JZ13,200905Zji)~~
文摘[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvement of soil quality in continuous-cropping sugarcane field. [Method] The soil in the experimental region is latosolic red soil which was planted with sugarcane for 11 years continuously, and 8 treatments including sole application of chemical fertilizers, sole application of organ- ic fertilizer, and combined application of organic fertilizer and chemical fertilizers were designed according to different fertilization measures. The effects of different fertilization treatments on soil microbial biomass, soil enzyme activities and related fertility factors were determined. [Result} Different fertilization treatments all showed soil microbial biomass N, C and P and activities of soil acid phosphatase, catalase, sucrase and urease higher than the CK. Soil microbial biomass N increased by 5.56%-67.13%, soil microbial biomass C increased by 4.01%-20.40%, and soil mi- crobial biomass P increased by 6.39%-67.02%. The activity of acid phosphatase was improved by 12.96%-35.19%, the activity of catalase was improved by 18.24% -78.93%, the activity of sucrase was improved by 3.00%-42.00%, and the activity of urease was improved by 1.21%-23.43%. However, the soil nutrients of different fertilization treatments increased non-significantly (P〉0.05). Soil microbial biomass N, C and P and activities of acid phosphatase, catalase and urease were in significant (P〈0.05) or very significant correlation (P〈0.01) with contents of soil rapidly available P, rapidly available K and total N. [Conclusion] The evaluation of improvement of soil fertility in continuous-cropping sugarcane field using soil microbial biomass and enzyme activities as indexes is more comprehensive and sensitive.
基金Supported by"11th Five-Year Plan"National Key Technology Research and Development Program(2006BAD25B08)~~
文摘[Objective] The aim was to study the effects of combined of manure and fertilizer on the content of nutrients in purplish soil as well as release dynamics of enzyme activities.[Method] The effects of manure and fertilizer application on the content of AOM,NH+4-N and NO-3-N in soil as well as release dynamics of enzyme activities were studied by means of simulation culturing.[Result] In the treatments of combined application of simulation culture experiment,the content of active organic matters,NH+4-N,NO-3-N and soil enzyme activities changed dynamically,which showed a shape of inverted "S" with two or more peaks.Compared with the treatment of fertilization,their peaks were relatively flat and occurred relatively late,while the treatment of fertilization had only one but the highest peak.The content of active organic matter came to top around 10 d in the order of cow5fertilizer5pig5fertilizer5cow manurepig manurefertilizer Ⅰfertilizer Ⅱ;the activity of urease came to top around 10 d in all treatments and in the order of pig manurecow5fertilizer5cow manurefertilizer Ⅰfertilizer Ⅱpig5fertilizer5.The activity of saccharase was in the order of pig5fertilizer5pig manurecow5fertilizer5cow manureCKfertilizer Ⅱfertilizer Ⅰ.[Conclusion] The study could provide the theoretical basis for reasonable application of manure and fertilizer.
文摘The nutritional composition of Pneumatophorus japonicus sauce was analyzed and compared with other fish sauces. The sodium chloride content of the sample Pneumatophorus japonicus sauce was greater than 25%. The total soluble nitrogen content was greater than 2.1 g/100mL, and the amino nitrogen content was greater than 1.2 g/100mL. The mineral content was abundant in the Pneumatophorus japonicus sauce, the calcium content and the magnesium content were 391.50±0.03 and 375.00±0.02 mg/L respectively, much higher than those in other samples. The iron content and the zinc content were 22.30±0.04 and 2.80±0.03 mg/L, respectively. The content of free amino acids was 5 552.17 mg/100mL, the content of essential amino acids was 2 666.00 mg/100mL,The taurine content was 113.05 mg/100mL. The antioxidant activity of the fermentation broth was 90.48%, while the TCA soluble peptide content was 29.04 mg/mL. Pneumatophorus japonicus sauce is nutritionally rich and has special physiological activity.
文摘Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fractions and soil nutrients in the first rotation site and the second rotation site of Chinese fir plantation and the native broad-leaved forest were investigated and analyzed by soil sampling at the Huitong Experimental Station of Forestry Ecology (at latitude 26°48′N and longitude 109°30′E under a subtropical climate conditions), Chinese Academy of Sciences in March, 2004. The results showed that values of ASOM fractions for the Chinese fir plantations were lower than those for the broad-leaved forest. The contents of easily oxidisable carbon (EOC), microbial biomass carbon (MBC), water soluble carbohydrate (WSC) and water-soluble organic carbon (WSOC) for the first rotation of Chinese fir plantation were 35.9%, 13.7%, 87.8% and 50.9% higher than those for the second rotation of Chinese fir plantation, and were 15.8%, 47.3%, 38.1% and 30.2% separately lower than those for the broad-leaved forest. For the three investigated forest sites, the contents of MBC and WSOC had a larger decrease, followed by WSC, and the change of EOC was least. Moreover, soil physico-chemistry properties such as soil nutrients in Chinese fir plantation were lower than those in broad-leaved forest. It suggested that soil fertility declined after Chinese fir plantation replaced native broad-leaved forest through continuous artificial plantation.
基金Supported by the National High Technology Research and Development Program of China (2007AA021506)the Natural Science Foundation of Zhejiang Province (R207609)the Research Project of Science and Technology of Zhejiang Province,China (2005C23027)
文摘Cordyceps ophioglossoides is a valuable traditional medicinal material.We have found that intracellular polysaccharide(IPS) is the major biologically active ingredient in Cordyceps ophioglossoides.This study is the first time to optimize the yield of IPS from Cordyceps ophioglossoides.The optimal medium for IPS production consists of glucose 54.50 g·L·1,yeast powder 25.50 g·L·1,NaH2PO4 0.4 g·L·1 and K2HPO4 0.4 g·L·1.The suggested culture conditions are 24 ℃,initial pH 4.5 with a rotary speed of 120 r·min·1 for 168 h.The yield of IPS is 737.93 mg·L·1,which is 50% higher than the yield under the conditions prior to optimization.The anti-oxidative activities of IPS in Cordyceps ophioglossoides L2 are also characterized using various in vitro assay.The anti-oxidative activity may explain the reason why IPS from Cordyceps ophioglossoides can be used to fight against neurodegenerative dis-eases and menopausal symptoms.
基金Supported by Guizhou Province Science and Technology Major Project(Qiankehe Major Special Project[2019]3007-6)Guizhou Province Science and Technology Support Plan Project(Qiankehe Support[2019]2773)Guizhou Province Reform and Transformation Plan Project(Qiankehe Z Word[2013]4006)。
文摘In this study,Cordyceps militaris strain QC04 was cultivated in oat,rice,and wheat media for different time periods.We studied the effects of different cultivation media and periods on the fruiting body biomass and active components of C.militaris,aiming to provide reference for the production and utilization of C.militaris QC04.The results showed that the dry weight of the fruiting body of C.militaris was the highest in the wheat medium,moderate in the oat medium,and the lowest in the rice medium.The content of cordycepin and adenosine in the fruiting body and residual medium was higher in the oat and rice media than in the rice medium.The content of cordycepin and adenosine in fruiting body and residual medium peaked on day 55.Furthermore,the content of cordycepin in the fruiting body was lower than that in the residual medium,while the content of adenosine showed an opposite trend.The content of cordycepic acid in the rice medium was generally higher than that in the oat and wheat media.As the cultivation period extended,the fruiting body biomass declined and the content of cordycepic acid in the fruiting body increased slightly.
基金Supported by the Science and Technology Project of Tackling Key Problems in Shandong Province(No.2010GHY10505)the National Natural Science Foundation of China(No.31172426)
文摘Gracilaria asiatica, being highly efficient in nutrient absorption, is cultivated in sea cucumber ponds to remove nutrients such as nitrogen and phosphate. It was cultured in a laboratory simulating field conditions, and its nutrient absorption was measured to evaluate effects of environmental conditions. Ammonia nitrogen (AN), nitrate nitrogen (NN), total inorganic nitrogen (TIN), and soluble reactive phosphorus (SRP) uptake rate and removal efficiency were determined in a 4~2 factorial design experiment in water temperatures (T) at 15~C and 25~C, algae biomass (AB) at 0.5 g/L and 1.0 g/L, total inorganic nitrogen (TIN) at 30 ~tmol/L and 60 ~tmol/L, and soluble reactive phosphorus (SRP) at 3 and 6 ~tmol/L. AB and ambient TIN or SRP levels significantly affected uptake rate and removal efficiency of AN, NN, TIN, and SRP (P〈0.001). G. asiatica in AB of 0.5 g/L showed higher uptake rate and lower removal efficiency relative to that with AB of 1.0 g/L. Nitrogen and phosphorus uptake rate rose with increasing ambient nutrient concentrations; nutrient removal efficiency decreased at higher environmental nutrient concentrations. The algae preferred to absorb AN to NN. Uptake rates of AN, NN, and SRP were significantly affected by temperature (P〈0.001); uptake rate was higher for the 25~C group than for the 15~C group at the initial experiment stage. Only the removal efficiency of AN and SRP showed a significant difference between the two temperature groups (P〈0.01). The four factors had significant interactive effects on absorption of N and P, implying that G. asiatica has great bioremedial potential in sea cucumber culture ponds.
基金Supported by the National Natural Science Foundation of China (21076090)
文摘Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium.
基金Supported by the National Natural Science Foundation of China(No.31371615,31071404)
文摘In order to provide the reference of improving the nutritional quality traits in carotenoids and screening its resources of wheat varieties, 185 wheat varieties or lines were selected as materials to test the carotenoids content, lipoxygenase activity, whiteness, yellowness and some other quality traits of whole mill in wheat.The results showed that there were highly significant variations in lipoxygenase activity,carotenoids content, whiteness and yellowness among those sample of wheat varieties; carotenoids content was significantly and positively correlated with yellowness.Cluster analysis was performed based on carotenoids content clustered all the varieties or lines into three major groups. Additionally, carotenoids were discussed in the application of nutritional quality improvement in wheat.
基金supported by the Foundation of Guangdong Forestry Bureau of China(Nos.F11031 and F15141)
文摘During January–February 2008, a severe ice storm caused significant damages to forests in southern China, creating canopy gaps and changing soil nutrient availability and enzyme activity. To understand the relationships between gap size, changes in the soil environment and the effects that these changes have on soil processes, we investigated the effects of gap size on soil chemical and biological properties in the forest gaps in a Cunninghamia lanceolata stand in northern Guangdong Province, southern China. Ten naturally created gaps, five large(80–100 m^2) and five small(30–40 m^2), were selected in the stand of C.lanceolata. The large gaps showed a significant increase in light transmission ratio and air and soil temperatures and a decline in soil moisture, organic matter,N and P compared with the small gaps and the adjacent canopy-covered plots in the 0–10 cm soil. The differences in organic matter and nutrient levels found between the large and small gaps and the canopy-covered plots may be related to changes in environmental conditions. This indicated rapid litter decomposition and increased nutrient leaching in the large gaps. Moreover, the lowest levels of catalase, acid phosphatase and urease activities occurred in large gaps because of the decline in their soil fertility. Large forest gaps may have a region of poor fertility, reducing soil nutrient availability and enzyme activity within the C.lanceolata stand.
基金supported by the National Natural Science Foundation of China(Grant Nos.31071691 and 31171846)the Major Projects of Cultivated Varieties of Genetically Modified Organisms(Grant No.2011ZX08012-005)the Self-determined and Innovative Research Funds of Wuhan University of Technology(Grant No.2011-1a-037),China
文摘Elevated CO 2 may reduce the tolerance of Nilaparvata lugen (N. lugens) to adverse environmental factors through the biological and physiological degeneration of N. lugens. In an artificial climate box, under 375 and 750 μL L 1 CO 2 levels, the rice stems nutrient content, the nutrient content and enzyme activities of N. lugens nymph fed on rice seedlings exposed to ambient and elevated CO 2 were studied. The results showed that rice stems had significantly higher protein and total amino acid levels under ambient than elevated CO 2 levels. Nymphs had significantly higher protein levels in the ambient CO 2 treatment, while their glucose levels were significantly lower under ambient CO 2 conditions. Significantly higher trypsin activity was observed in nymphs grown in elevated CO 2 . Significantly lower activities of the protective enzymes total superoxide dismutase and catalase were observed in the nymphs under ambient CO 2 . Meanwhile, the activity of the detoxification enzyme glutathione S-transferase was significantly higher in the ambient CO 2 treatment. Measuring how energy and resources were allocated to enzymes in N. lugens nymphs under elevated CO 2 conditions can provide a more meaningful evaluation of their metabolic tolerances to adverse climatic conditions.
基金Supported by Jiangsu Provincial Independent Innovation Program of Agricultural Science and Technology,China(No.CX(12)100504)Zhejiang Provincial Oceanic and Fishery Projects,China(No.[2013]108)the Major Scientific Research Projects of Zhejiang Province,China(No.2012C12017-3)
文摘With increasing demand for irrigation water, agricultural scientists and planners pay more attention to the utilization of diluted seawater as an alternative source for irrigation of crops. A greenhouse pot experiment was conducted to study how seawater stress(SS) affects growth, water content, cationic accumulation, and active ingredients in leaves of Aloe vera after 30 d of growth in nutrient media with 0%(control), 22%(22% SS), and 42%(42% SS) seawater stress. Results indicated the SS did not change dry biomass of leaves and stems, but gradually decreased biomass allocation to roots with increasing seawater stress. Na+and Cl-in A. vera plant did not increase obviously with a big increase in seawater percentage due to low transpiration of Aloe vera. 42% SS decreased N concentration in most plant organs, but did not change or increased P concentration. Seawater stress tended to decrease concentrations of K+and Ca2+in A. vera. However, seawater salinity tended to increase the concentrations of aloin concentration in top(young) and middle leaves, and there was no significant effect of both stresses on aloin concentration in base(old) leaves. The 42% SS treatment decreased polysaccharide concentrations only in the base leaves, but not in top and middle leaves. In summary, supplying suitably diluted seawater for 30 d could increase the qualities and value of A. vera, without substantial effects on shoot dry biomass production.