Optimal stocking densities were investigated for the sea cucumber Apostichopusjaponicus Selenka under feed-supplement and non-feed-supplement regimes in net enclosures for 333 d. Substantial weight loss occurred durin...Optimal stocking densities were investigated for the sea cucumber Apostichopusjaponicus Selenka under feed-supplement and non-feed-supplement regimes in net enclosures for 333 d. Substantial weight loss occurred during the aestivation phase (AE). Decreased growth rates were also observed during the winter phase (WT). In contrast, sea cucumbers showed rapid growth during the spring (SP) and autumn (AU) phases. Feeding regimes considerably influenced the growtb performance, i.e., sea cucumbers grew faster under feed-supplement regime than under non-feed-supplement regime (P 〈 0.05). The average survival rates of sea cucumbers under feed-supplement regime were higher than those under non-feed-supplement regime for both the autumn phase and spring phase, but the differences were only significant for the latter phase (P〈 0.05). The fitted B-N curves showed that the optimal stocking densities, in terms of net production, were 22.3 ind. m^-2 for feed-supplement regime and 14.1 ind. m^-2 for non-feed-supplement regime.展开更多
Monthly changes in sedimentation and sediment properties were studied for three different culture treatments: sea cucumber monoculture (Mc), sea cucumber and scallop polyculture (Ps-c) and scallop monoculture (M...Monthly changes in sedimentation and sediment properties were studied for three different culture treatments: sea cucumber monoculture (Mc), sea cucumber and scallop polyculture (Ps-c) and scallop monoculture (Ms). Results indicated that the survival rate of sea cucumber was significantly higher in Ps-c cultures than in Mc cultures. Sea cucumber yield was 69.6% higher in Ps-c culture than in Mc culture. No significant differences in body weight and scallop shell length were found between Ps-c and Ms cultures. The mean sedimentation rate of total particulate matter (TPM) was 72.2 g/(m^2.d) in Ps-c cultures, with a maximum of 119.7 g/(mE.d), which was markedly higher than that of Mc (mean value). Sedimentation rates of organic matter (OM), total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in Ps-c cultures were also significantly higher than those in Mc cultures. TOC and TN contents of sediment increased rapidly in the first 5 months in Ms cultures and remained at a high level. TOC and TN contents in Mc and Ps-c cultures decreased during sea cucumber feeding seasons and increased during sea cucumber dormancy periods (summer and winter). The study demonstrates that co-culture of sea cucumber and scallop in earthen ponds is an alternative way to alleviate nutrient loads and improve water quality in coastal aquaculture systems. Moreover, it provides the additional benefit of an increased sea cucumber yield.展开更多
Using net enclosures in an earthen pond, we established three culture treatments with the sea cucumber Apostichopus japonicus and the Chinese white shrimp Fenneropenaeus chinensis : monoculture of sea cucumbers(C), mo...Using net enclosures in an earthen pond, we established three culture treatments with the sea cucumber Apostichopus japonicus and the Chinese white shrimp Fenneropenaeus chinensis : monoculture of sea cucumbers(C), monoculture of shrimp(S), and co-culture of the two species(CS). We measured levels of suspended particulate matter in the water column; total organic matter, total organic carbon, total nitrogen, and carbon/nitrogen ratios in both settling particles and the sediment; and chlorophyll a levels in the sediment. We then compared these variables between the three treatments. We also examined growth, survival, and yield of the two species in the different treatments. From June to September, the mean monthly suspended particulate matter sedimentation rates in the CS and S treatments were significantly( P <0.05) greater than those in the C treatment. From August to November, the mean monthly total organic matter, total organic carbon, total nitrogen, and chlorophyll a contents in the sediment in the CS and S treatments were significantly( P <0.05) greater than those in the C treatment. Final wet weight, specific growth rate, survival rate, and total yield of sea cucumbers in co-culture were all significantly greater than those of sea cucumbers in monoculture. There were no significant differences among any of these variables for shrimp reared in the two systems. The bioturbation of the sediment and fecal production of the shrimp likely supplied natural food for the sea cucumbers. Co-culture of the two species is a viable option for increasing yield per unit area, maximizing use of the water body, and diversifying crop production.展开更多
基金supported by the National Project of Scientific and Technical Supporting Programs (Grant Nos. 2006BAD09A01, 2006BAD09A06)the Hi-Tech Research and Development Program of China funded by Ministry of Science & Technology of China (Grant No. 2006AA10Z409)the National Natural Science Foundation of China (Grant No. 30871931)
文摘Optimal stocking densities were investigated for the sea cucumber Apostichopusjaponicus Selenka under feed-supplement and non-feed-supplement regimes in net enclosures for 333 d. Substantial weight loss occurred during the aestivation phase (AE). Decreased growth rates were also observed during the winter phase (WT). In contrast, sea cucumbers showed rapid growth during the spring (SP) and autumn (AU) phases. Feeding regimes considerably influenced the growtb performance, i.e., sea cucumbers grew faster under feed-supplement regime than under non-feed-supplement regime (P 〈 0.05). The average survival rates of sea cucumbers under feed-supplement regime were higher than those under non-feed-supplement regime for both the autumn phase and spring phase, but the differences were only significant for the latter phase (P〈 0.05). The fitted B-N curves showed that the optimal stocking densities, in terms of net production, were 22.3 ind. m^-2 for feed-supplement regime and 14.1 ind. m^-2 for non-feed-supplement regime.
基金Supported by the National Key Technology Research and Development Program of China (Nos. 2006BAD09A01, 200905020)the National Natural Science Foundation of China (No. 30871931)the Program for New Century Excellent Talents in University (No. NCET-08-0503)
文摘Monthly changes in sedimentation and sediment properties were studied for three different culture treatments: sea cucumber monoculture (Mc), sea cucumber and scallop polyculture (Ps-c) and scallop monoculture (Ms). Results indicated that the survival rate of sea cucumber was significantly higher in Ps-c cultures than in Mc cultures. Sea cucumber yield was 69.6% higher in Ps-c culture than in Mc culture. No significant differences in body weight and scallop shell length were found between Ps-c and Ms cultures. The mean sedimentation rate of total particulate matter (TPM) was 72.2 g/(m^2.d) in Ps-c cultures, with a maximum of 119.7 g/(mE.d), which was markedly higher than that of Mc (mean value). Sedimentation rates of organic matter (OM), total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in Ps-c cultures were also significantly higher than those in Mc cultures. TOC and TN contents of sediment increased rapidly in the first 5 months in Ms cultures and remained at a high level. TOC and TN contents in Mc and Ps-c cultures decreased during sea cucumber feeding seasons and increased during sea cucumber dormancy periods (summer and winter). The study demonstrates that co-culture of sea cucumber and scallop in earthen ponds is an alternative way to alleviate nutrient loads and improve water quality in coastal aquaculture systems. Moreover, it provides the additional benefit of an increased sea cucumber yield.
基金Supported by the National 12th Five Year Supporting Program for Science and Technology(No.2011BAD13B03)the Natural Science Funds for Distinguished Young Scientists of Shandong Province(No.JQ201009)+4 种基金the Promotive Research Fund for Young and Middle-aged Scientists of Shandong Province(No.BS2015HZ004)the National Natural Science Foundation of China(No.30871931)the Natural Science Foundation of Qingdao Agricultural University(No.1113329)Qingdao City(No.15-9-1-89-jch)the Shrimp Crab Innovation Team of Shandong Agricultural Research System(No.SDAIT-15-011-06)
文摘Using net enclosures in an earthen pond, we established three culture treatments with the sea cucumber Apostichopus japonicus and the Chinese white shrimp Fenneropenaeus chinensis : monoculture of sea cucumbers(C), monoculture of shrimp(S), and co-culture of the two species(CS). We measured levels of suspended particulate matter in the water column; total organic matter, total organic carbon, total nitrogen, and carbon/nitrogen ratios in both settling particles and the sediment; and chlorophyll a levels in the sediment. We then compared these variables between the three treatments. We also examined growth, survival, and yield of the two species in the different treatments. From June to September, the mean monthly suspended particulate matter sedimentation rates in the CS and S treatments were significantly( P <0.05) greater than those in the C treatment. From August to November, the mean monthly total organic matter, total organic carbon, total nitrogen, and chlorophyll a contents in the sediment in the CS and S treatments were significantly( P <0.05) greater than those in the C treatment. Final wet weight, specific growth rate, survival rate, and total yield of sea cucumbers in co-culture were all significantly greater than those of sea cucumbers in monoculture. There were no significant differences among any of these variables for shrimp reared in the two systems. The bioturbation of the sediment and fecal production of the shrimp likely supplied natural food for the sea cucumbers. Co-culture of the two species is a viable option for increasing yield per unit area, maximizing use of the water body, and diversifying crop production.