Sparids are of considerable economic importance in marine fishery and aquaculture in China, and the species diversity of this group is considered relatively high. However, the accurate species identification and delim...Sparids are of considerable economic importance in marine fishery and aquaculture in China, and the species diversity of this group is considered relatively high. However, the accurate species identification and delimitation of sparids in China remain unaddressed. In this study, we used mitochondrial cytochrome oxidase subunit ?(COI) and 16S ribosomal RNA(16S) genes to conduct DNA barcoding and species delimitation in eleven sparid species from the coastal waters of China. Based on Kimura-2 parameter genetic distances, the mean intraspecific/interspecific variation for COI and 16S were calculated as 0.004/0.152 and 0.002/0.072, respectively. All the conspecific individuals formed monophyletic clusters in neighbour-joining trees of both markers. An obvious barcoding gap was detected for each species, and a common genetic threshold of 1.3% sequence divergence was defined for species delimitation in both markers. Although the sequence variation of 16S was generally lower than that of COI, the results indicated that sparid species could be ef fectively and accurately identified and delimited by COI as well as 16S. Thus, we propose that the COI gene serve as the standard DNA barcode for sparids, and that the 16S gene could also be an ideal candidate barcode. Moreover, each of the six sparid species( Argyrops spinifer, Rhabdosargus sarba, Dentex hypselosomus, Acanthopagrus latus, Acanthopagrus australis and Acanthopagrus berda) showed high intraspecific divergence(>1.3% genetic threshold) with the remarkable geographic lineages in the Indo-West Pacific oceans, which supported that potential unrecognized cryptic species were in them. The potential cryptic diversity revealed here might be primarily attributed to the allopatric divergences caused by the long-term geographic isolation between the Indian and West Pacific oceans or between the opposite sides of the Indian Ocean. The results further suggest that a revision of taxonomic status of these species is required, followed by development of a biodiversity conservation strategy.展开更多
Wild and farmed fish generally dif fer in their nutritional composition. In this study, adult wild and farmed broadhead catfish( Clarias macrocephalus Günther, 1864) were collected and were assessed for various c...Wild and farmed fish generally dif fer in their nutritional composition. In this study, adult wild and farmed broadhead catfish( Clarias macrocephalus Günther, 1864) were collected and were assessed for various characteristics, namely morphometrics, digestive indexes, and flesh quality. The morphometrics(standard length, body depth, eye width, fin height and tentacle length) and the digestive indexes(intestosomatic index, digestosomatic index, perivisceral fat index and activities of pepsin and lipase) diff ered significantly between the groups(P <0.05) and can be used to distinguish wild fish from farmed fish. In terms of protein synthesis capacity and color, the flesh quality was similar between the groups. However, radical scavenging activities and reducing power were significantly higher in the wild fish than in the farmraised group. The thermal transition characteristics of sarcoplasmic proteins, as well as myosin denaturation enthalpy and fatty acid profiles(C18:2 n6, C20:0, C22:1 n9, C24:0, Σpolyunsaturated fatty acids, and Σn–6) also exhibited potential to enable calls about the fish origin. The proximate chemical composition of whole body did not diff er between the two fish populations. Our findings suggest bioindicators, in terms of morphometrics, digestive indexes and flesh quality, that can be used to identify the origin of fish for forensic purposes, of for conservation biology of this near threatened species. The new nutritional information may be of interest to marketing, consumers, and has a connection to nutritional eff ects on human health.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.31372532,41006084,41276166)the Project for Outstanding Young Teachers in Higher Education of Guangdong,China(No.Yq2013093)
文摘Sparids are of considerable economic importance in marine fishery and aquaculture in China, and the species diversity of this group is considered relatively high. However, the accurate species identification and delimitation of sparids in China remain unaddressed. In this study, we used mitochondrial cytochrome oxidase subunit ?(COI) and 16S ribosomal RNA(16S) genes to conduct DNA barcoding and species delimitation in eleven sparid species from the coastal waters of China. Based on Kimura-2 parameter genetic distances, the mean intraspecific/interspecific variation for COI and 16S were calculated as 0.004/0.152 and 0.002/0.072, respectively. All the conspecific individuals formed monophyletic clusters in neighbour-joining trees of both markers. An obvious barcoding gap was detected for each species, and a common genetic threshold of 1.3% sequence divergence was defined for species delimitation in both markers. Although the sequence variation of 16S was generally lower than that of COI, the results indicated that sparid species could be ef fectively and accurately identified and delimited by COI as well as 16S. Thus, we propose that the COI gene serve as the standard DNA barcode for sparids, and that the 16S gene could also be an ideal candidate barcode. Moreover, each of the six sparid species( Argyrops spinifer, Rhabdosargus sarba, Dentex hypselosomus, Acanthopagrus latus, Acanthopagrus australis and Acanthopagrus berda) showed high intraspecific divergence(>1.3% genetic threshold) with the remarkable geographic lineages in the Indo-West Pacific oceans, which supported that potential unrecognized cryptic species were in them. The potential cryptic diversity revealed here might be primarily attributed to the allopatric divergences caused by the long-term geographic isolation between the Indian and West Pacific oceans or between the opposite sides of the Indian Ocean. The results further suggest that a revision of taxonomic status of these species is required, followed by development of a biodiversity conservation strategy.
基金Supported by the Research Fund from the Faculty of Science(No.1-2557-02-005)the Graduate School Research Support Funding for Thesis of the Prince of Songkla University
文摘Wild and farmed fish generally dif fer in their nutritional composition. In this study, adult wild and farmed broadhead catfish( Clarias macrocephalus Günther, 1864) were collected and were assessed for various characteristics, namely morphometrics, digestive indexes, and flesh quality. The morphometrics(standard length, body depth, eye width, fin height and tentacle length) and the digestive indexes(intestosomatic index, digestosomatic index, perivisceral fat index and activities of pepsin and lipase) diff ered significantly between the groups(P <0.05) and can be used to distinguish wild fish from farmed fish. In terms of protein synthesis capacity and color, the flesh quality was similar between the groups. However, radical scavenging activities and reducing power were significantly higher in the wild fish than in the farmraised group. The thermal transition characteristics of sarcoplasmic proteins, as well as myosin denaturation enthalpy and fatty acid profiles(C18:2 n6, C20:0, C22:1 n9, C24:0, Σpolyunsaturated fatty acids, and Σn–6) also exhibited potential to enable calls about the fish origin. The proximate chemical composition of whole body did not diff er between the two fish populations. Our findings suggest bioindicators, in terms of morphometrics, digestive indexes and flesh quality, that can be used to identify the origin of fish for forensic purposes, of for conservation biology of this near threatened species. The new nutritional information may be of interest to marketing, consumers, and has a connection to nutritional eff ects on human health.