The monthly variation,temporal-spatial distribution,transportation characteristics of vapour field at middle and lower atmosphere and their effects on drought in Beijing,Tianjin and Hebei districts were studied,which ...The monthly variation,temporal-spatial distribution,transportation characteristics of vapour field at middle and lower atmosphere and their effects on drought in Beijing,Tianjin and Hebei districts were studied,which have a guiding significance on predicting climate and arranging agricultural production in the district.展开更多
The wind field plays a decisive role in haze generation and dissipation processes over the Beijing- Tianjin-Hebei (BTH) region. Although geographically the BTH region is under the influence of the East Asian winter ...The wind field plays a decisive role in haze generation and dissipation processes over the Beijing- Tianjin-Hebei (BTH) region. Although geographically the BTH region is under the influence of the East Asian winter monsoon (EAWM), this study finds that common indices of the EAWM cannot adequately describe the actual wind speed changes in the BTH region.Thus, observational data are used to analyze the interannual variations of the winter wind field over the BTH region. The results show that the average winter wind speed is 2.0 m s-1, with a slight rate of decline of 0.01 m s-1 yr-1. In most cases, strong-wind years correspond to negative sea surface temperature (SST) anomalies over the tropical Pacific, whereas weak-wind years correspond to positive SST anomalies. Moreover, correlation and composite analyses show that the interannual variability is affected by multiple factors, including the following: (1) the pressure gradient in the high and middle latitudes of the Northern Hemisphere, as in strong-wind years the pressure gradient helps cold air move from high latitudes to middle latitudes; (2) the skin temperature in Eurasia, as low skin temperature in Eurasia in strong-wind years is conducive to the accumulation of cold air; and (3) the SST of the tropical Pacific east of the Philippines, as in strong-wind years the high temperature of this area affects the BTH region through anticyclonic activity and associated tropical circulation systems.展开更多
Nowadays, the coordinated development of Jing-Jin-Ji has been a national strategy, and has brought unprecedented opportuniyies for the development fof education in this region. However, there are also some bottlenecks...Nowadays, the coordinated development of Jing-Jin-Ji has been a national strategy, and has brought unprecedented opportuniyies for the development fof education in this region. However, there are also some bottlenecks that restrict the development of this region. Therefore, this paper will analyze some typical cases of coordinated development of education in this region and put forward some suggestions and strategies to provide some references for the development.展开更多
As a typical secondary air pollutant,surface ozone has been monitored routinely since 2013 in China.Most studies on the spatiotemporal variation of ozone have been centered around the daily maximum 8-h average,with li...As a typical secondary air pollutant,surface ozone has been monitored routinely since 2013 in China.Most studies on the spatiotemporal variation of ozone have been centered around the daily maximum 8-h average,with little attention paid to the trends of hourly ozone,especially hourly ozone exceedances.Focusing on hourly ozone exceedances and peak values,the spatiotemporal trends of hourly ozone at 77 sites in 13 cities of the Beijing-Tianjin-Hebei(BTH)region during 2017-2021 were analyzed in this study.The number of hours with exceedances(N_(H200))in 2019 was nearly three times that of 2021.On a five-year average,the percentage of cumulative NH200 in June accounted for up to 40.5%of all hourly exceedances.Cities in central Hebei Province had the highest cumulative annual N_(H200).June had the highest average hourly ozone exceeded multiples of 0.158.The top two cities with the highest average exceeded multiple were Tangshan(0.166)and Beijing(0.158).Tangshan and Xingtai ranked as the top two in terms of the mean of the 10 highest daily maximum ozone concentrations(MTDM),with 286.74 and 285.37μg m^(−3),respectively.The gap between the MTDM and the daily maximum of hourly ozone averaged over all sites had narrowed to 97.88μg m^(−3) in 2021,much lower than that in other years,which indicated that the stability and convergence of ozone pollution in BTH region had been enhanced in 2021 to some extent.展开更多
In February 2014, the Beijing-Tianjin-Hebei(BTH) area experienced a weeklong episode of heavy haze pollution. Cities such as Beijing(BJ) and Shijiazhuang(SJZ) issued heavy pollution alerts for the first time and took ...In February 2014, the Beijing-Tianjin-Hebei(BTH) area experienced a weeklong episode of heavy haze pollution. Cities such as Beijing(BJ) and Shijiazhuang(SJZ) issued heavy pollution alerts for the first time and took emergency control measures. This study employed the Nested Air Quality Prediction Modeling System(NAQPMS) to simulate and analyze the three-dimensional structure of the source contributions of PM2.5 in the BTH area during this pollution episode and quantitatively assessed the effects of the emergency control measures. The results showed that during the polluted period(February 19–26), surface PM2.5 mainly originated from local sources(48%–72%). In the entire BTH area, southern Hebei(SHB) represented the largest internal contribution(33%), while the main external contributions came from Shandong(SD)(10%) and Henan(HN)(4%). Vertically, the local contribution was constrained below the near-ground layer, and rapidly decreased with altitude. The regional transport path from SHB and Shanxi(SX) to BJ appeared at 0.5–1.5 and 1.5–2.5 km, with contributions of 32%–42% and 13%–27%, respectively. The non-local source regions for the BTH area were SD below 1 km and mainly SX and HN above 1 km. Compared to the non-polluted period(February 27–28), the contribution from regional transport increased during the polluted period, indicating the key role of regional transport in the pollution formation. The emergency control measures had a relatively large effect on NOx and SO2 concentrations, but a limited effect on PM2.5. The stronger regional transport during the polluted period may have weakened the effects of the local emergency control measures. These results indicated that a coordinated emission control should be implemented not only over the BTH area but also over its surrounding provinces(e.g. SD, HN).展开更多
Rapid urbanization causing serious air pollution and ecological risks in the Beijing–Tianjin–Hebei region in North China has attracted worldwide attention. This study estimates the key ecosystem services of land cov...Rapid urbanization causing serious air pollution and ecological risks in the Beijing–Tianjin–Hebei region in North China has attracted worldwide attention. This study estimates the key ecosystem services of land covers in Zhangjiakou and Chengde, and analyzes their main contributions and the effects of ecosystem service flows to Beijing. Results indicated that the total economic value of key ecosystem services in the Zhangjiakou–Chengde region was CNY 189.5 billion in 2013, and that these services were generated mainly from the forestlands, grasslands, and farmlands of Chengde and the eastern region of Zhangjiakou. However, nearly half of land covers provided low ecosystem service values and thus should be enhanced. In addition, approximately 21% of key ecosystem services were delivered from the Zhangjiakou–Chengde region into Beijing, and the flow feasibilities of ecosystem services delivered by water and wind reached 34% and 12%, respectively. Chicheng, Zhuolu, Chongli, Huailai, Xuanhua and Guyuan counties contributed 61% of the ecosystem services flowing into Beijing, and each service showed high regional relationships with Beijing(flow index ≥ 40%). Thus, these services should be prioritized in terms of ecological compensation funds and policies from Beijing.展开更多
Beijing, Tianjin and Hebei each contributed to the comprehensive governance of bulk coal to treat bulk coal pollution in a mutually beneficial way in 2017. The cooperative game theory is used in this paper to study th...Beijing, Tianjin and Hebei each contributed to the comprehensive governance of bulk coal to treat bulk coal pollution in a mutually beneficial way in 2017. The cooperative game theory is used in this paper to study the environmental benefits and cost effectiveness brought about by this comprehensive governance strategy, primarily focusing on the issue of how to maximize the environmental benefits by choosing an appropriate strategy since the benefits to Beijing, Tianjin and Hebei are closely related. Therefore, the linear optimization, game theory and Shapley value method in the cooperative game model are used to find the ways to minimize the total governance cost of bulk coal in the three areas. In addition, the issues of how to carry out rational distribution and transfer of governance capital among the three places are explored according to the actual amounts of consumption of bulk coal, the influence of the coal burning on the PM2.5 and the actual cost of coal governance in Beijing, Tianjin and Hebei in 2017. The results show that the governance task in Hebei Province is the most onerous, and requires more investment than the other two cities. Thus, it requires the support from other two cities, with the amount of increased capital required of about 600 million Yuan. At the same time, the cost saved after optimization in Tianjin is calculated to be the largest, which thus can be adjusted appropriately and allocated to Hebei for the governance of bulk coal. The model constructed in this paper can not only be used to solve the issues related to bulk coal consumption in Beijing, Tianjin and Hebei, but also to carry out the effective distribution of capital, by which a win-win scenario among the three places can be achieved.展开更多
基金Supported by National Natural Sciences Foundations of China(40875032 and 40875002)Talents Culture Foundations of Beijing City (20051D0200802)~~
文摘The monthly variation,temporal-spatial distribution,transportation characteristics of vapour field at middle and lower atmosphere and their effects on drought in Beijing,Tianjin and Hebei districts were studied,which have a guiding significance on predicting climate and arranging agricultural production in the district.
基金supported by the National Natural Science Foundation of China[grant number 41176014]
文摘The wind field plays a decisive role in haze generation and dissipation processes over the Beijing- Tianjin-Hebei (BTH) region. Although geographically the BTH region is under the influence of the East Asian winter monsoon (EAWM), this study finds that common indices of the EAWM cannot adequately describe the actual wind speed changes in the BTH region.Thus, observational data are used to analyze the interannual variations of the winter wind field over the BTH region. The results show that the average winter wind speed is 2.0 m s-1, with a slight rate of decline of 0.01 m s-1 yr-1. In most cases, strong-wind years correspond to negative sea surface temperature (SST) anomalies over the tropical Pacific, whereas weak-wind years correspond to positive SST anomalies. Moreover, correlation and composite analyses show that the interannual variability is affected by multiple factors, including the following: (1) the pressure gradient in the high and middle latitudes of the Northern Hemisphere, as in strong-wind years the pressure gradient helps cold air move from high latitudes to middle latitudes; (2) the skin temperature in Eurasia, as low skin temperature in Eurasia in strong-wind years is conducive to the accumulation of cold air; and (3) the SST of the tropical Pacific east of the Philippines, as in strong-wind years the high temperature of this area affects the BTH region through anticyclonic activity and associated tropical circulation systems.
文摘Nowadays, the coordinated development of Jing-Jin-Ji has been a national strategy, and has brought unprecedented opportuniyies for the development fof education in this region. However, there are also some bottlenecks that restrict the development of this region. Therefore, this paper will analyze some typical cases of coordinated development of education in this region and put forward some suggestions and strategies to provide some references for the development.
基金supported by the National Key Research and Development Program of China[grant number 2022YFC3700705]。
文摘As a typical secondary air pollutant,surface ozone has been monitored routinely since 2013 in China.Most studies on the spatiotemporal variation of ozone have been centered around the daily maximum 8-h average,with little attention paid to the trends of hourly ozone,especially hourly ozone exceedances.Focusing on hourly ozone exceedances and peak values,the spatiotemporal trends of hourly ozone at 77 sites in 13 cities of the Beijing-Tianjin-Hebei(BTH)region during 2017-2021 were analyzed in this study.The number of hours with exceedances(N_(H200))in 2019 was nearly three times that of 2021.On a five-year average,the percentage of cumulative NH200 in June accounted for up to 40.5%of all hourly exceedances.Cities in central Hebei Province had the highest cumulative annual N_(H200).June had the highest average hourly ozone exceeded multiples of 0.158.The top two cities with the highest average exceeded multiple were Tangshan(0.166)and Beijing(0.158).Tangshan and Xingtai ranked as the top two in terms of the mean of the 10 highest daily maximum ozone concentrations(MTDM),with 286.74 and 285.37μg m^(−3),respectively.The gap between the MTDM and the daily maximum of hourly ozone averaged over all sites had narrowed to 97.88μg m^(−3) in 2021,much lower than that in other years,which indicated that the stability and convergence of ozone pollution in BTH region had been enhanced in 2021 to some extent.
基金supported by the CAS Strategic Priority Research Program(XDB05030200,XDB05030101)the National Natural Science Foundation of China(41405119,41275138)+2 种基金the National Key Technology R&D Program(2014BAC21B02,2014BAC06B03)the Environmental Public Welfare Research Project(201309071,201509014)the National Basic Research Program of China(2014CB447900)
文摘In February 2014, the Beijing-Tianjin-Hebei(BTH) area experienced a weeklong episode of heavy haze pollution. Cities such as Beijing(BJ) and Shijiazhuang(SJZ) issued heavy pollution alerts for the first time and took emergency control measures. This study employed the Nested Air Quality Prediction Modeling System(NAQPMS) to simulate and analyze the three-dimensional structure of the source contributions of PM2.5 in the BTH area during this pollution episode and quantitatively assessed the effects of the emergency control measures. The results showed that during the polluted period(February 19–26), surface PM2.5 mainly originated from local sources(48%–72%). In the entire BTH area, southern Hebei(SHB) represented the largest internal contribution(33%), while the main external contributions came from Shandong(SD)(10%) and Henan(HN)(4%). Vertically, the local contribution was constrained below the near-ground layer, and rapidly decreased with altitude. The regional transport path from SHB and Shanxi(SX) to BJ appeared at 0.5–1.5 and 1.5–2.5 km, with contributions of 32%–42% and 13%–27%, respectively. The non-local source regions for the BTH area were SD below 1 km and mainly SX and HN above 1 km. Compared to the non-polluted period(February 27–28), the contribution from regional transport increased during the polluted period, indicating the key role of regional transport in the pollution formation. The emergency control measures had a relatively large effect on NOx and SO2 concentrations, but a limited effect on PM2.5. The stronger regional transport during the polluted period may have weakened the effects of the local emergency control measures. These results indicated that a coordinated emission control should be implemented not only over the BTH area but also over its surrounding provinces(e.g. SD, HN).
基金National Major Research Development Program of China(2016YFC0503403)Special Institute Cultivation Project of Institute of Geographical Sciences and Natural Resources Research,Chinese Academy of Sciences(TSYJS05)
文摘Rapid urbanization causing serious air pollution and ecological risks in the Beijing–Tianjin–Hebei region in North China has attracted worldwide attention. This study estimates the key ecosystem services of land covers in Zhangjiakou and Chengde, and analyzes their main contributions and the effects of ecosystem service flows to Beijing. Results indicated that the total economic value of key ecosystem services in the Zhangjiakou–Chengde region was CNY 189.5 billion in 2013, and that these services were generated mainly from the forestlands, grasslands, and farmlands of Chengde and the eastern region of Zhangjiakou. However, nearly half of land covers provided low ecosystem service values and thus should be enhanced. In addition, approximately 21% of key ecosystem services were delivered from the Zhangjiakou–Chengde region into Beijing, and the flow feasibilities of ecosystem services delivered by water and wind reached 34% and 12%, respectively. Chicheng, Zhuolu, Chongli, Huailai, Xuanhua and Guyuan counties contributed 61% of the ecosystem services flowing into Beijing, and each service showed high regional relationships with Beijing(flow index ≥ 40%). Thus, these services should be prioritized in terms of ecological compensation funds and policies from Beijing.
文摘Beijing, Tianjin and Hebei each contributed to the comprehensive governance of bulk coal to treat bulk coal pollution in a mutually beneficial way in 2017. The cooperative game theory is used in this paper to study the environmental benefits and cost effectiveness brought about by this comprehensive governance strategy, primarily focusing on the issue of how to maximize the environmental benefits by choosing an appropriate strategy since the benefits to Beijing, Tianjin and Hebei are closely related. Therefore, the linear optimization, game theory and Shapley value method in the cooperative game model are used to find the ways to minimize the total governance cost of bulk coal in the three areas. In addition, the issues of how to carry out rational distribution and transfer of governance capital among the three places are explored according to the actual amounts of consumption of bulk coal, the influence of the coal burning on the PM2.5 and the actual cost of coal governance in Beijing, Tianjin and Hebei in 2017. The results show that the governance task in Hebei Province is the most onerous, and requires more investment than the other two cities. Thus, it requires the support from other two cities, with the amount of increased capital required of about 600 million Yuan. At the same time, the cost saved after optimization in Tianjin is calculated to be the largest, which thus can be adjusted appropriately and allocated to Hebei for the governance of bulk coal. The model constructed in this paper can not only be used to solve the issues related to bulk coal consumption in Beijing, Tianjin and Hebei, but also to carry out the effective distribution of capital, by which a win-win scenario among the three places can be achieved.