期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
恒温热源条件下内不可逆布雷顿循环的功率密度特性 被引量:2
1
作者 郑军林 陈林根 孙丰瑞 《燃气轮机技术》 北大核心 2000年第4期30-33,40,共5页
用有限时间热力学方法分析恒温热源条件下不可逆布雷顿循环的功率密度特性 ,计入工质与高、低温侧换热器的热阻损失及压气机、透平的不可逆压缩和膨胀损失 ,导出了功率密度与压比间的解析式 ,并通过数值计算将对应于最大功率密度时的一... 用有限时间热力学方法分析恒温热源条件下不可逆布雷顿循环的功率密度特性 ,计入工质与高、低温侧换热器的热阻损失及压气机、透平的不可逆压缩和膨胀损失 ,导出了功率密度与压比间的解析式 ,并通过数值计算将对应于最大功率密度时的一些参数与对应于最大功率时的同样参数进行了比较 。 展开更多
关键词 恒温热源 内不可逆 布雷顿循环 功率密度
下载PDF
变温热源条件下内不可逆布雷顿循环的功率密度特性
2
作者 郑军林 陈林根 孙丰瑞 《燃气涡轮试验与研究》 2000年第4期9-12,17,共5页
用有限时间热力学方法分析变温热源条件下不可逆布雷顿循环的功率密度特性 ,计入工质与高、低温侧换热器的热阻损失及压气机、涡轮机的不可逆压缩和膨胀损失 ,导出了功率密度与压比间的解析式 ,并通过数值计算将对应于最大功率密度时的... 用有限时间热力学方法分析变温热源条件下不可逆布雷顿循环的功率密度特性 ,计入工质与高、低温侧换热器的热阻损失及压气机、涡轮机的不可逆压缩和膨胀损失 ,导出了功率密度与压比间的解析式 ,并通过数值计算将对应于最大功率密度时的一些参数与对应于最大功率时的同样参数进行了比较 ,说明了功率密度设计的优点与不足。 展开更多
关键词 有限时间热力学 内不可逆 布雷顿循环 功率密度 变温热源 热机设计
下载PDF
内不可逆性对三热源制冷循环性能的影响
3
作者 陈金灿 《低温工程》 CAS CSCD 1993年第6期6-11,共6页
关键词 三热源 制冷机 内不可逆 制冷循环
下载PDF
Evaluation of convective heat transfer in a tube based on local exergy destruction rate 被引量:3
4
作者 WANG JunBo LIU ZhiChun LIU Wei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第10期1494-1506,共13页
In this study, exergy efficiency is defined to evaluate convective heat transfer in a tube based on the local exergy destruction rate from the equilibrium equation of available potential. By calculating this destructi... In this study, exergy efficiency is defined to evaluate convective heat transfer in a tube based on the local exergy destruction rate from the equilibrium equation of available potential. By calculating this destruction rate, the local irreversibility of convective heat transfer can be evaluated quantitatively. The exergy efficiency and distribution of local exergy destruction rate for a smooth tube, an enhanced tube into which short-width twisted tape has been inserted, and an optimized tube with exergy destruction minimization are analyzed by solving the governing equations through a finite volume method(FVM). For the smooth tube, the exergy efficiency increases with increasing Reynolds number(Re) and decreases as the heat flux increases, whereas the Nusselt number(Nu) remains constant. For the enhanced tube, the exergy efficiency increases with increasing Reynolds number and increases as the short-width rate(w) increases. An analysis of the distribution of the local exergy destruction rate for a smooth tube shows that exergy destruction in the annular region between the core flow and tube wall is the highest. Furthermore, the exergy destruction for the enhanced and optimized tubes is reduced compared with that of the smooth tube. When the Reynolds number varies from 500 to 1750, the exergy efficiencies for the smooth, enhanced, and optimized tubes are in the ranges 0.367–0.485, 0.705–0.857, and 0.885–0.906, respectively. The results show that exergy efficiency is an effective evaluation criterion for convective heat transfer and the distribution of the local exergy destruction rate reveals the distribution of local irreversible loss. Disturbance in the core flow can reduce exergy destruction, and improve the exergy efficiency as well as heat transfer rate. Besides, optimization with exergy destruction minimization can provide effective guidance to improve the technology of heat transfer enhancement. 展开更多
关键词 convective heat transfer available potential exergy destruction rate exergy efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部