Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture ha...Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2) and H_(2)O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2) are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2) and H_(2)O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research.展开更多
A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube ...A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.展开更多
Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggreg...Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline(0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. v WF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce v WF level in vascular endothelial injury rats and also significantly reduce v WF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and v WF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.展开更多
We read with a great interest the recent work of Deli and colleagues. in the World Journal of Gastroenterology reporting vascular endothelial growth factor (VEGF) expression in hepatocellular carcinoma (HCC) and c...We read with a great interest the recent work of Deli and colleagues. in the World Journal of Gastroenterology reporting vascular endothelial growth factor (VEGF) expression in hepatocellular carcinoma (HCC) and cirrhotic liver tissues. This well-documented work shows that VEGF was significantly higher in surrounding cirrhotic liver tissues than in HCC. Authors assessed VEGF expression using immunohistochemistry. The immunohistochemical staining is an efficient tool to assess the percentage of cells stained positively for VEGF but is not really efficient to estimate their true VEGF content. Evaluation of the VEGF protein by an enzyme-linked immunosorbent assay 0ELISA) has been reported, by us and others, to be an efficient tool in order to assess tissue VEGF expression. We have, thus, tested whether the ELISA method might be an efficient tool in order to confirm data reporting higher amounts of VEGF in surrounding cirrhotic liver tissues than in HCC. Deli and colleagues. also correctly pointed out that basic fibroblast growth factor (bFGF) has been reported to act cooperatively on VEGF expression. We have, thus, also assessed bFGF tissue levels in order to search for a putative link between VEGF and bFGF levels in cirrhotic tissues.展开更多
Palladium‐catalyzed asymmetric allylic alkylation(AAA)of vinyl benzoxazinanones has become an important strategy for the synthesis of chiral nitrogen‐containing heterocycle compounds.However,the asymmetric synthesis...Palladium‐catalyzed asymmetric allylic alkylation(AAA)of vinyl benzoxazinanones has become an important strategy for the synthesis of chiral nitrogen‐containing heterocycle compounds.However,the asymmetric synthesis of linear‐selective products has rarely been reported.The simultaneous control of regio‐,E/Z‐and enantioselectivities constitutes a major challenge and inhibits the advancement of this chemistry.Herein,we present a palladium‐catalyzed AAA of vinyl benzoxazinanones withα‐thiocyanato ketones,affording various chiral thiocyanates characterized with high linear‐,E‐and stereoselectivities.The reaction has a broad substrate scope and the chiral thiocyanates can be transformed to useful heterocycles.Experimental and computational studies suggest an inner‐sphere mechanism for AAA process,which results from the acidic and coordination effect of the nucleophilic substrates with palladium catalyst.展开更多
This paper deals with utilization possibility of a kinematical couple of screw-matrix in minimachine mechatronic concept which is assigned to move within the pipes having less than 25 mm of the inner diameter. The pri...This paper deals with utilization possibility of a kinematical couple of screw-matrix in minimachine mechatronic concept which is assigned to move within the pipes having less than 25 mm of the inner diameter. The principle of the movement for a straightforward motion consists in transformation of the actuator rotary movement through a screw and a nut to the linear motion. It causes a change of distance between the front and rear parts of the minimachine modules. Due to minimization of the dimensions, the electrical control and power supply components are placed outside of the minimachine operating area. The control module is based on a programmable integrated circuit (PIC).展开更多
Intramolecular ortho-C-H activation and C-N/C-O cyclizations of phenyl amidines and amides have recently been achieved under Cu catalysis. These reactions provide important examples of Cu-catalyzed functionalization o...Intramolecular ortho-C-H activation and C-N/C-O cyclizations of phenyl amidines and amides have recently been achieved under Cu catalysis. These reactions provide important examples of Cu-catalyzed functionalization of inert C-H bonds, but their mechanisms remain poorly understood. In the present study the several possible mechanisms including electrophilic aro- matic substitution, concerted metalation-deprotonation (CMD), Friedel-Crafts mechanism, radical mechanism, and proton- coupled electron transfer have been theoretically examined. Cu(II)-assisted CMD mechanism is found to be the most feasible for both C-O and C-N cyclizations. This mechanism includes three steps, i.e. CMD with Cu(II), oxidation of the Cu(II) inter- mediate, and reductive elimination from Cu(III). Our calculations show that Cu(II) mediates the C-H activation through an six-membered ring CMD transition state similar to that proposed for many Pd-catalyzed C-H activation reactions. It is also in- teresting to find that the rate-limiting steps are different for C-N and C-O cyclizations: for the former it is concerted metalation-deprotonation with Cu(II), whereas for the latter it is reductive elimination from Cu(III). The above conclusions are consistent with the experimental kinetic isotope effects (1.0 and 2.1 for C-O and C-N cyclizations, respectively), substituent effects, and the reactions under O2-free conditions.展开更多
文摘Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2) and H_(2)O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2) are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2) and H_(2)O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research.
基金Project(51775481)supported by the National Natural Science Foundation of ChinaProject(A2016002017)supported by the High-level Talents Program of Heibei Province,China
文摘A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.
文摘Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline(0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. v WF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce v WF level in vascular endothelial injury rats and also significantly reduce v WF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and v WF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.
文摘We read with a great interest the recent work of Deli and colleagues. in the World Journal of Gastroenterology reporting vascular endothelial growth factor (VEGF) expression in hepatocellular carcinoma (HCC) and cirrhotic liver tissues. This well-documented work shows that VEGF was significantly higher in surrounding cirrhotic liver tissues than in HCC. Authors assessed VEGF expression using immunohistochemistry. The immunohistochemical staining is an efficient tool to assess the percentage of cells stained positively for VEGF but is not really efficient to estimate their true VEGF content. Evaluation of the VEGF protein by an enzyme-linked immunosorbent assay 0ELISA) has been reported, by us and others, to be an efficient tool in order to assess tissue VEGF expression. We have, thus, tested whether the ELISA method might be an efficient tool in order to confirm data reporting higher amounts of VEGF in surrounding cirrhotic liver tissues than in HCC. Deli and colleagues. also correctly pointed out that basic fibroblast growth factor (bFGF) has been reported to act cooperatively on VEGF expression. We have, thus, also assessed bFGF tissue levels in order to search for a putative link between VEGF and bFGF levels in cirrhotic tissues.
文摘Palladium‐catalyzed asymmetric allylic alkylation(AAA)of vinyl benzoxazinanones has become an important strategy for the synthesis of chiral nitrogen‐containing heterocycle compounds.However,the asymmetric synthesis of linear‐selective products has rarely been reported.The simultaneous control of regio‐,E/Z‐and enantioselectivities constitutes a major challenge and inhibits the advancement of this chemistry.Herein,we present a palladium‐catalyzed AAA of vinyl benzoxazinanones withα‐thiocyanato ketones,affording various chiral thiocyanates characterized with high linear‐,E‐and stereoselectivities.The reaction has a broad substrate scope and the chiral thiocyanates can be transformed to useful heterocycles.Experimental and computational studies suggest an inner‐sphere mechanism for AAA process,which results from the acidic and coordination effect of the nucleophilic substrates with palladium catalyst.
文摘This paper deals with utilization possibility of a kinematical couple of screw-matrix in minimachine mechatronic concept which is assigned to move within the pipes having less than 25 mm of the inner diameter. The principle of the movement for a straightforward motion consists in transformation of the actuator rotary movement through a screw and a nut to the linear motion. It causes a change of distance between the front and rear parts of the minimachine modules. Due to minimization of the dimensions, the electrical control and power supply components are placed outside of the minimachine operating area. The control module is based on a programmable integrated circuit (PIC).
基金the financial support from the National Basic Research Program of China (973 program, 2012CB215306)the National Natural Science Foundation of China (NSFC, 20832004, 20972148)CAS(KJCX2-EW-J02)
文摘Intramolecular ortho-C-H activation and C-N/C-O cyclizations of phenyl amidines and amides have recently been achieved under Cu catalysis. These reactions provide important examples of Cu-catalyzed functionalization of inert C-H bonds, but their mechanisms remain poorly understood. In the present study the several possible mechanisms including electrophilic aro- matic substitution, concerted metalation-deprotonation (CMD), Friedel-Crafts mechanism, radical mechanism, and proton- coupled electron transfer have been theoretically examined. Cu(II)-assisted CMD mechanism is found to be the most feasible for both C-O and C-N cyclizations. This mechanism includes three steps, i.e. CMD with Cu(II), oxidation of the Cu(II) inter- mediate, and reductive elimination from Cu(III). Our calculations show that Cu(II) mediates the C-H activation through an six-membered ring CMD transition state similar to that proposed for many Pd-catalyzed C-H activation reactions. It is also in- teresting to find that the rate-limiting steps are different for C-N and C-O cyclizations: for the former it is concerted metalation-deprotonation with Cu(II), whereas for the latter it is reductive elimination from Cu(III). The above conclusions are consistent with the experimental kinetic isotope effects (1.0 and 2.1 for C-O and C-N cyclizations, respectively), substituent effects, and the reactions under O2-free conditions.