AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activ...AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activator of transcription 3 (Stat3) activity in gastric cancer. METHODS: Human gastric cancer (AGS) cells were treated with IL-6 (50 ng/mL) and EGCG at different concentrations. VEGF, total Stat3 and activated Stat3 protein levels in the cell lyses were examined by Western blotting, VEGF protein level in the conditionedmedium was measured by enzyme-linked immunosorbent assay, and the level of VEGF mRNA was evaluated by reverse transcription polymerase chain reaction (RTPCR). Stat3 nuclear translocation was determined by Western blotting with nuclear extract, and Stat3-DNA binding activity was examined with Chromatin immunoprecipitation (ChIP) assay. IL-6 induced endothelial cell proliferation was measured with 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazoliumbromide assay, in vitro angiogenesis was determined with endothelial cell tube formation assay in Matrigel, and IL-6-induced angiogenesis in vitro was measured with Matrigel plug assay. RESULTS: There was a basal expression and secretion of VEGF in AGS cells. After stimulation with IL-6, VEGF expression was apparently up-regulated and a 2.4-fold increase was observed. VEGF secretion in the conditioned medium was also increased by 2.8 folds. When treated with EGCG, VEGF expression and secretion were dose-dependently decreased. IL-6 also increased VEGF mRNA expression by 3.1 folds. EGCG treatment suppressed VEGF mRNA expression in a dose-dependent manner. EGCG dose-dependently inhibited Stat3 activation induced by IL-6, but did not change the total Stat3 expression. When treated with EGCG or AG490, VEGF expressions were reduced to the level or an even lower level in the tumor cells not stimulated with IL-6. However, PD98059 and LY294002 did not change VEGF expression induced by IL-6. EGCG inhibited Stat3 nucleus translocation, and Stat3-DNA binding activity was also markedly decreased by EGCG. Furthermore, EGCG inhibited IL-6 induced vascular endothelial cell proliferation and tube formation in vitro and angiogenesis in vitro . CONCLUSION: EGCG inhibits IL-6-induced VEGF expression and angiogenesis via suppressing Stat3 activity in gastric cancer, which has provided a novel mechanistic insight into the anti-angiogenic activity of EGCG.展开更多
Meretrix meretrix Linnaeus has long been used as traditional Chinese medicine in oriental medicine.The angiogentic activity of the extract of M.meretrix was investigated in this study,using human umbilical vein endoth...Meretrix meretrix Linnaeus has long been used as traditional Chinese medicine in oriental medicine.The angiogentic activity of the extract of M.meretrix was investigated in this study,using human umbilical vein endothelial cells(HUVECs).Extract of M.meretrix Linnaeus(AFG-25) was prepared with acetone and ethanol precipitation,and further separated by Sephadex G-25 column.The results show that AFG-25 promoted proliferation,migration,and capillary-like tube formation in HUVECs,and in the presence of eNOS inhibitor NMA,the tube formation induced by AFG-25 is inhibited significantly.Moreover,AFG25 could also promote the activation of endothelial nitric oxide synthase(eNOS) and the resultant elevation of nitric oxide(NO) production.The results suggested that M.meretrix contains active ingredients with angiogentic activity and eNOS/NO signal pathway is in part involved in the proangiogenesis effect induced by AFG-25.展开更多
Fluorescent probes play a key role in modern biomedical research. As compared to inorganic quantum dots (QDs) composed with heavy metal elements, organic dye-based fluorescent nanoparticles have higher biocompatibilit...Fluorescent probes play a key role in modern biomedical research. As compared to inorganic quantum dots (QDs) composed with heavy metal elements, organic dye-based fluorescent nanoparticles have higher biocompatibility and are richer in variety. However, traditional organic fluorophores tend to quench fluorescence upon aggregation, which is known as aggregation-caused quenching (ACQ) effect that hinders the fabrication of highly emissive fluorescent nanoparticles. In this work, we demonstrate the synthesis of organic fluorescent dots with aggregation-induced emission (AIE) in far-red/near-infrared (FA/NIR) region. A conventional ACQ-characteristic fluorescent dye, 3,4:9,10-tetracarboxylic perylene bisimide (PBI), is converted into an AIE fluorogen through attaching two tetraphenylethylene (TPE) moieties. The fluorescent dots with surface folic acid groups are fabricated from PBI derivative (DTPEPBI), showing specific targeting effect to folate receptor-overexpressed cancer cells. In vivo studies also suggest that the folic acid-functionalized AIE dots preferentially accumulate in the tumor site through enhanced permeability and retention (EPR) effect and folate receptor-mediated active targeting effect. The low cyto-toxicity, good FR/NIR contrast and excellent targeting ability in in vitro/in vivo imaging indicate that the AIE dots have great potentials in advanced bioimaging applications.展开更多
To make clear the precise hemodynamic mechanism underlying the anti-atherogenesis benefit of enhanced external couterpulsation(EECP) treatment, and to investigate the proper role of some important hemodynamic factors ...To make clear the precise hemodynamic mechanism underlying the anti-atherogenesis benefit of enhanced external couterpulsation(EECP) treatment, and to investigate the proper role of some important hemodynamic factors during the atherosclerotic progress, a comprehensive study combining long-term animal experiment and numerical solving was conducted in this paper. An experimentally induced hypercholesterolemic porcine model was developed and the chronic EECP intervention was subjected. Basic hemodynamic measurement was performed in vivo, as well as the arterial endothelial samples were extracted for physiological examination. Meanwhile, a numerical model was introduced to solve the complex hemodynamic factors such as WSS and OSI. The results show that EECP treatment resulted in significant increase of the instant levels of arterial WSS, blood pressure, and OSI. During EECP treatment, the instant OSI level of the common carotid arteries over cardiac cycles raised to a mean value of 8.58 ×10-2±2.13 ×10-2. Meanwhile, the chronic intervention of EECP treatment significantly reduced the atherosclerotic lesions in abdominal aortas and the endothelial cellular adherence. The present study suggests that the unique blood flow pattern induced by EECP treatment and the augmentation of WSS level in cardiac cycles may be the most important hemodynamic mechanism that contribute to its anti-atherogenesis effect. And as one of the indices that cause great concern in current hemodynamic study, OSI may not play a key role during the initiation of atherosclerosis.展开更多
基金Supported by National Natural Science Foundation of China, Grant, No. 30571833Natural Science Foundation of Guangdong Province, 05001785China Postdoctoral Science Foundation 20100470963
文摘AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activator of transcription 3 (Stat3) activity in gastric cancer. METHODS: Human gastric cancer (AGS) cells were treated with IL-6 (50 ng/mL) and EGCG at different concentrations. VEGF, total Stat3 and activated Stat3 protein levels in the cell lyses were examined by Western blotting, VEGF protein level in the conditionedmedium was measured by enzyme-linked immunosorbent assay, and the level of VEGF mRNA was evaluated by reverse transcription polymerase chain reaction (RTPCR). Stat3 nuclear translocation was determined by Western blotting with nuclear extract, and Stat3-DNA binding activity was examined with Chromatin immunoprecipitation (ChIP) assay. IL-6 induced endothelial cell proliferation was measured with 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazoliumbromide assay, in vitro angiogenesis was determined with endothelial cell tube formation assay in Matrigel, and IL-6-induced angiogenesis in vitro was measured with Matrigel plug assay. RESULTS: There was a basal expression and secretion of VEGF in AGS cells. After stimulation with IL-6, VEGF expression was apparently up-regulated and a 2.4-fold increase was observed. VEGF secretion in the conditioned medium was also increased by 2.8 folds. When treated with EGCG, VEGF expression and secretion were dose-dependently decreased. IL-6 also increased VEGF mRNA expression by 3.1 folds. EGCG treatment suppressed VEGF mRNA expression in a dose-dependent manner. EGCG dose-dependently inhibited Stat3 activation induced by IL-6, but did not change the total Stat3 expression. When treated with EGCG or AG490, VEGF expressions were reduced to the level or an even lower level in the tumor cells not stimulated with IL-6. However, PD98059 and LY294002 did not change VEGF expression induced by IL-6. EGCG inhibited Stat3 nucleus translocation, and Stat3-DNA binding activity was also markedly decreased by EGCG. Furthermore, EGCG inhibited IL-6 induced vascular endothelial cell proliferation and tube formation in vitro and angiogenesis in vitro . CONCLUSION: EGCG inhibits IL-6-induced VEGF expression and angiogenesis via suppressing Stat3 activity in gastric cancer, which has provided a novel mechanistic insight into the anti-angiogenic activity of EGCG.
基金Supported by the Innovative Drug Development Projects of China(Nos. 2009ZX09103-661 and 2009ZX09102)the National Natural Science Foundation of China(No.81001396)
文摘Meretrix meretrix Linnaeus has long been used as traditional Chinese medicine in oriental medicine.The angiogentic activity of the extract of M.meretrix was investigated in this study,using human umbilical vein endothelial cells(HUVECs).Extract of M.meretrix Linnaeus(AFG-25) was prepared with acetone and ethanol precipitation,and further separated by Sephadex G-25 column.The results show that AFG-25 promoted proliferation,migration,and capillary-like tube formation in HUVECs,and in the presence of eNOS inhibitor NMA,the tube formation induced by AFG-25 is inhibited significantly.Moreover,AFG25 could also promote the activation of endothelial nitric oxide synthase(eNOS) and the resultant elevation of nitric oxide(NO) production.The results suggested that M.meretrix contains active ingredients with angiogentic activity and eNOS/NO signal pathway is in part involved in the proangiogenesis effect induced by AFG-25.
基金the Agency for Science Technology and Research Joint Council and Institute of Materials Research and Engineering of Singapore (IMRE/13-8P1104)the Singapore National Research Foundation (R-279-000-390-281)+1 种基金the Research Grants Council of Hong Kong (603509, HKUST2/CRF/10, 604711, N_HKUST620/11)the Guangdong Innovative Research Team Program (201101C0105067115)
文摘Fluorescent probes play a key role in modern biomedical research. As compared to inorganic quantum dots (QDs) composed with heavy metal elements, organic dye-based fluorescent nanoparticles have higher biocompatibility and are richer in variety. However, traditional organic fluorophores tend to quench fluorescence upon aggregation, which is known as aggregation-caused quenching (ACQ) effect that hinders the fabrication of highly emissive fluorescent nanoparticles. In this work, we demonstrate the synthesis of organic fluorescent dots with aggregation-induced emission (AIE) in far-red/near-infrared (FA/NIR) region. A conventional ACQ-characteristic fluorescent dye, 3,4:9,10-tetracarboxylic perylene bisimide (PBI), is converted into an AIE fluorogen through attaching two tetraphenylethylene (TPE) moieties. The fluorescent dots with surface folic acid groups are fabricated from PBI derivative (DTPEPBI), showing specific targeting effect to folate receptor-overexpressed cancer cells. In vivo studies also suggest that the folic acid-functionalized AIE dots preferentially accumulate in the tumor site through enhanced permeability and retention (EPR) effect and folate receptor-mediated active targeting effect. The low cyto-toxicity, good FR/NIR contrast and excellent targeting ability in in vitro/in vivo imaging indicate that the AIE dots have great potentials in advanced bioimaging applications.
基金Key Clinical Project from the Ministry of Healthgrant number:25400+1 种基金National Natural Science Foundation of Chinagrant number:81170272
文摘To make clear the precise hemodynamic mechanism underlying the anti-atherogenesis benefit of enhanced external couterpulsation(EECP) treatment, and to investigate the proper role of some important hemodynamic factors during the atherosclerotic progress, a comprehensive study combining long-term animal experiment and numerical solving was conducted in this paper. An experimentally induced hypercholesterolemic porcine model was developed and the chronic EECP intervention was subjected. Basic hemodynamic measurement was performed in vivo, as well as the arterial endothelial samples were extracted for physiological examination. Meanwhile, a numerical model was introduced to solve the complex hemodynamic factors such as WSS and OSI. The results show that EECP treatment resulted in significant increase of the instant levels of arterial WSS, blood pressure, and OSI. During EECP treatment, the instant OSI level of the common carotid arteries over cardiac cycles raised to a mean value of 8.58 ×10-2±2.13 ×10-2. Meanwhile, the chronic intervention of EECP treatment significantly reduced the atherosclerotic lesions in abdominal aortas and the endothelial cellular adherence. The present study suggests that the unique blood flow pattern induced by EECP treatment and the augmentation of WSS level in cardiac cycles may be the most important hemodynamic mechanism that contribute to its anti-atherogenesis effect. And as one of the indices that cause great concern in current hemodynamic study, OSI may not play a key role during the initiation of atherosclerosis.