The compartimentation of fluids in the microliter, nanoliter and picoliter range leads recently to many applications of microfluidics in material development, diagnostics and biological screenings. Droplet-based micro...The compartimentation of fluids in the microliter, nanoliter and picoliter range leads recently to many applications of microfluidics in material development, diagnostics and biological screenings. Droplet-based microfluidics allows the improvement of nanoparticle homogeneity and the tuning of particle properties. It supports combinatorial synthesis of inorganic as well as organic substances and can be applied for the cultivation and screening of bacteria, eucaryotic cells and fish embryos. The well-ordered handling and the addressing of microfluid segments improves the information transfer between chemical, biological and electronic systems. Despite this remarkable technical progress, there is a particular importance of microfluidics for future nanotechnological solutions. The hierarchical spatial organization of liquids, particles and gels in microfluidics represents a fundamental biomimetic principle which overcomes the limits of planar technology and opens the gate for realizing complex structured threedimensional nanoarchitectures. Recent applications of microstructured fluids in chemistry and biology and concepts for future developments will be discussed.展开更多
文摘The compartimentation of fluids in the microliter, nanoliter and picoliter range leads recently to many applications of microfluidics in material development, diagnostics and biological screenings. Droplet-based microfluidics allows the improvement of nanoparticle homogeneity and the tuning of particle properties. It supports combinatorial synthesis of inorganic as well as organic substances and can be applied for the cultivation and screening of bacteria, eucaryotic cells and fish embryos. The well-ordered handling and the addressing of microfluid segments improves the information transfer between chemical, biological and electronic systems. Despite this remarkable technical progress, there is a particular importance of microfluidics for future nanotechnological solutions. The hierarchical spatial organization of liquids, particles and gels in microfluidics represents a fundamental biomimetic principle which overcomes the limits of planar technology and opens the gate for realizing complex structured threedimensional nanoarchitectures. Recent applications of microstructured fluids in chemistry and biology and concepts for future developments will be discussed.