Material properties of blank have a great effect on power spinning process of aluminum alloy parts with transverse inner rib.By using finite element(FE) and Taguchi method,the effects and significance of five key mate...Material properties of blank have a great effect on power spinning process of aluminum alloy parts with transverse inner rib.By using finite element(FE) and Taguchi method,the effects and significance of five key material parameters,namely,anisotropic index in thickness direction,yield strength,hardening exponent,strengthening factor and elastic modulus on the formability of inner rib,tendency of wall fracture and degree of inhomogeneous deformation of finished spun parts were obtained.The achievements provide an important guide for selecting reasonable spinning material,and are very significant for the optimum design and precision control of power spinning process of parts with transverse inner rib.展开更多
In many parts of the global plates,including subduction zones,mid-ocean ridges and even the interior of the continental plates,seismic anisotropy has a certain correlation with image of absolute plate motion( APM),or ...In many parts of the global plates,including subduction zones,mid-ocean ridges and even the interior of the continental plates,seismic anisotropy has a certain correlation with image of absolute plate motion( APM),or is in accord with the predominant direction of the intraplate stress field. In our study,a statistical analysis is done on the correlations of plate motion with seismic anisotropy as well as a stress field within nine plate boundaries which contain major subduction zones in the globe. Results indicate that absolute or relative plate motion( RPM) controls the seismic anisotropy and stress field of the plate boundary,which is especially obvious for the RPM. It can also be inferred that the correlation of RPM is better than that of APM. Because of the complexity of subduction mechanism and diversity of controlling factors at plate boundaries containing subduction zones,the correlation becomes much complex. Sources of anisotropy at various depths show different characteristics,and stress state is controlled by many factors,thus further discussions on the correlations are required.展开更多
Steel wire wound reinforced flexible pipe in this study mainly consists of multiple anisotropic steel wire wound reinforcement layers and multiple isotropic rubber layers.Based on 3D anisotropic elastic theory,the ana...Steel wire wound reinforced flexible pipe in this study mainly consists of multiple anisotropic steel wire wound reinforcement layers and multiple isotropic rubber layers.Based on 3D anisotropic elastic theory,the analytic solutions of stresses and elastic deformations of steel wire wound reinforced rubber flexible pipe under internal pressure are presented.As the adjacent reinforcement layers with wound angle have different radii,the single reinforcement layer shows the effect of tensile-shear coupling.Moreover,the static loading test results of steel wire wound reinforced rubber flexible pipe under internal pressure are basically coincided with the calculated values by present method.展开更多
The covalent attachment of protein-resistant polymers to therapeutic proteins is a widely used method for extending their in vivo half-lives; however, the effect of molecular weight of polymer on the in vitro and in v...The covalent attachment of protein-resistant polymers to therapeutic proteins is a widely used method for extending their in vivo half-lives; however, the effect of molecular weight of polymer on the in vitro and in vivo functions of protein-polymer conjugates has not been well elucidated. Herein we report the effect of molecular weight of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) on the in vitro and in vivo properties of C-termi- nal interferon-alpha (IFN)-POEGMA conjugates. Increasing the molecular weight of POEGMA decreased the in vitro activity of IFN-ct but increased its thermal stability and in vivo pharmacokinetics. Intriguingly, the in vivo antitumor efficacy of IFN-a was increased by increasing the POEGMA molecular weight from ca. 20 to 60 kDa, but was not further increased by increasing the molecular weight of POEGMA from ca. 60 to 100 kDa due to the neutralization of the improved pharmacokinetics and the reduced in vitro activity. This finding offers a new viewpoint on the molecular size rationale for designing next-generation protein-polymer conjugates, which may benefit patients by reducing admin- istration frequency and adverse reactions, and improving therapeutic efficacy.展开更多
基金Projects(50405039,50575186) supported by the National Natural Science Foundation of ChinaProject(50225518) supported by the National Natural Science Foundation of China for Distinguished Young ScholarsProject(2008AA04Z122) supported by the National High-tech Research and Development Program of China
文摘Material properties of blank have a great effect on power spinning process of aluminum alloy parts with transverse inner rib.By using finite element(FE) and Taguchi method,the effects and significance of five key material parameters,namely,anisotropic index in thickness direction,yield strength,hardening exponent,strengthening factor and elastic modulus on the formability of inner rib,tendency of wall fracture and degree of inhomogeneous deformation of finished spun parts were obtained.The achievements provide an important guide for selecting reasonable spinning material,and are very significant for the optimum design and precision control of power spinning process of parts with transverse inner rib.
基金sponsored by the National Natural Science Foundation of China(41174084)
文摘In many parts of the global plates,including subduction zones,mid-ocean ridges and even the interior of the continental plates,seismic anisotropy has a certain correlation with image of absolute plate motion( APM),or is in accord with the predominant direction of the intraplate stress field. In our study,a statistical analysis is done on the correlations of plate motion with seismic anisotropy as well as a stress field within nine plate boundaries which contain major subduction zones in the globe. Results indicate that absolute or relative plate motion( RPM) controls the seismic anisotropy and stress field of the plate boundary,which is especially obvious for the RPM. It can also be inferred that the correlation of RPM is better than that of APM. Because of the complexity of subduction mechanism and diversity of controlling factors at plate boundaries containing subduction zones,the correlation becomes much complex. Sources of anisotropy at various depths show different characteristics,and stress state is controlled by many factors,thus further discussions on the correlations are required.
基金the National Natural Science Foundation of China (No. 50439010)
文摘Steel wire wound reinforced flexible pipe in this study mainly consists of multiple anisotropic steel wire wound reinforcement layers and multiple isotropic rubber layers.Based on 3D anisotropic elastic theory,the analytic solutions of stresses and elastic deformations of steel wire wound reinforced rubber flexible pipe under internal pressure are presented.As the adjacent reinforcement layers with wound angle have different radii,the single reinforcement layer shows the effect of tensile-shear coupling.Moreover,the static loading test results of steel wire wound reinforced rubber flexible pipe under internal pressure are basically coincided with the calculated values by present method.
基金financially supported by Grants from the National Natural Science Foundation of China (21274043 and 21534006).
文摘The covalent attachment of protein-resistant polymers to therapeutic proteins is a widely used method for extending their in vivo half-lives; however, the effect of molecular weight of polymer on the in vitro and in vivo functions of protein-polymer conjugates has not been well elucidated. Herein we report the effect of molecular weight of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) on the in vitro and in vivo properties of C-termi- nal interferon-alpha (IFN)-POEGMA conjugates. Increasing the molecular weight of POEGMA decreased the in vitro activity of IFN-ct but increased its thermal stability and in vivo pharmacokinetics. Intriguingly, the in vivo antitumor efficacy of IFN-a was increased by increasing the POEGMA molecular weight from ca. 20 to 60 kDa, but was not further increased by increasing the molecular weight of POEGMA from ca. 60 to 100 kDa due to the neutralization of the improved pharmacokinetics and the reduced in vitro activity. This finding offers a new viewpoint on the molecular size rationale for designing next-generation protein-polymer conjugates, which may benefit patients by reducing admin- istration frequency and adverse reactions, and improving therapeutic efficacy.