Let R be an associated ring with identity. A new equivalent characterization of pure projective left R-modules is given by applying homological methods. It is proved that a left R-module P is pure projective if and on...Let R be an associated ring with identity. A new equivalent characterization of pure projective left R-modules is given by applying homological methods. It is proved that a left R-module P is pure projective if and only if for any pure epimorphism E→M→0, where E is pure injective, HomR(P, E)→HomR(P, M)→0 is exact. Also, we obtain a dual result of pure injective left R-modules. Furthermore, it is shown that every pure projective left R-module is closed under pure submodule if and only if every pure injective left R-module is closed under pure epimorphic image.展开更多
In this paper,We give the forms of AR sequences of a tilted algebra with terms all belonging to x(A_T),or all belonging to y(A_T).The sink maps of a tilted algebra which end at the indecompos able projective modules a...In this paper,We give the forms of AR sequences of a tilted algebra with terms all belonging to x(A_T),or all belonging to y(A_T).The sink maps of a tilted algebra which end at the indecompos able projective modules and the source maps of starting at the indecomposable injective modules are also obtained.These results together with the connecting sequecnes given in [3] determine the AR quiver of the tilted algcbra,morever,this can be done directly from the AR quiver of the correspond ing hereditary algebra.展开更多
That the projective limit of any projective system of compact inverse semigroups is also a compact inverse semigroup, the injective limit of any injective system of inverse semigroups is also an inverse semigroup, and...That the projective limit of any projective system of compact inverse semigroups is also a compact inverse semigroup, the injective limit of any injective system of inverse semigroups is also an inverse semigroup, and that a compact inverse semigroup is topologically isomorphic to a strict projective limit of compact metric inverse semigroups are proved. It is also demonstrated that Hom (S,T) is a topological inverse semigroup provided that S or T is a topological inverse semigroup with some other conditions. Being proved by means of the combination of topological semigroup theory with inverse semigroup theory, all these results generalize the corresponding ones related to topological semigroups or topological groups.展开更多
In this note,some characterizations of hereditary rings using injectivity classes and projectivity classes are given.These results unify many well known results.
The authors introduce and investigate the Tc-Gorenstein projective, Lc- Gorenstein injective and Hc-Gorenstein flat modules with respect to a semidualizing module C which shares the common properties with the Gorenste...The authors introduce and investigate the Tc-Gorenstein projective, Lc- Gorenstein injective and Hc-Gorenstein flat modules with respect to a semidualizing module C which shares the common properties with the Gorenstein projective, injective and flat modules, respectively. The authors prove that the classes of all the Tc-Gorenstein projective or the Hc-Gorenstein flat modules are exactly those Gorenstein projective or flat modules which are in the Auslander class with respect to C, respectively, and the classes of all the Lc-Gorenstein 'injective modules are exactly those Gorenstein injective modules which are in the Bass class, so the authors get the relations between the Gorenstein projective, injective or flat modules and the C-Gorenstein projective, injective or flat modules. Moreover, the authors consider the Tc(R)-projective and Lc(R)-injective dimensions and Tc(R)-precovers and Lc(R)-preenvelopes. Fiually, the authors study the Hc-Gorenstein flat modules and extend the Foxby equivalences.展开更多
文摘Let R be an associated ring with identity. A new equivalent characterization of pure projective left R-modules is given by applying homological methods. It is proved that a left R-module P is pure projective if and only if for any pure epimorphism E→M→0, where E is pure injective, HomR(P, E)→HomR(P, M)→0 is exact. Also, we obtain a dual result of pure injective left R-modules. Furthermore, it is shown that every pure projective left R-module is closed under pure submodule if and only if every pure injective left R-module is closed under pure epimorphic image.
文摘In this paper,We give the forms of AR sequences of a tilted algebra with terms all belonging to x(A_T),or all belonging to y(A_T).The sink maps of a tilted algebra which end at the indecompos able projective modules and the source maps of starting at the indecomposable injective modules are also obtained.These results together with the connecting sequecnes given in [3] determine the AR quiver of the tilted algcbra,morever,this can be done directly from the AR quiver of the correspond ing hereditary algebra.
文摘That the projective limit of any projective system of compact inverse semigroups is also a compact inverse semigroup, the injective limit of any injective system of inverse semigroups is also an inverse semigroup, and that a compact inverse semigroup is topologically isomorphic to a strict projective limit of compact metric inverse semigroups are proved. It is also demonstrated that Hom (S,T) is a topological inverse semigroup provided that S or T is a topological inverse semigroup with some other conditions. Being proved by means of the combination of topological semigroup theory with inverse semigroup theory, all these results generalize the corresponding ones related to topological semigroups or topological groups.
文摘In this note,some characterizations of hereditary rings using injectivity classes and projectivity classes are given.These results unify many well known results.
基金Project supported by the National Natural Science Foundation of China(No.10971090)
文摘The authors introduce and investigate the Tc-Gorenstein projective, Lc- Gorenstein injective and Hc-Gorenstein flat modules with respect to a semidualizing module C which shares the common properties with the Gorenstein projective, injective and flat modules, respectively. The authors prove that the classes of all the Tc-Gorenstein projective or the Hc-Gorenstein flat modules are exactly those Gorenstein projective or flat modules which are in the Auslander class with respect to C, respectively, and the classes of all the Lc-Gorenstein 'injective modules are exactly those Gorenstein injective modules which are in the Bass class, so the authors get the relations between the Gorenstein projective, injective or flat modules and the C-Gorenstein projective, injective or flat modules. Moreover, the authors consider the Tc(R)-projective and Lc(R)-injective dimensions and Tc(R)-precovers and Lc(R)-preenvelopes. Fiually, the authors study the Hc-Gorenstein flat modules and extend the Foxby equivalences.