A low-frequency debris flow took place in the north coastal range of Venezuela on Dec. 16, 1999, and scientists all over the world paid attention to this catastrophe. Four characteristics of low-frequency debris hazar...A low-frequency debris flow took place in the north coastal range of Venezuela on Dec. 16, 1999, and scientists all over the world paid attention to this catastrophe. Four characteristics of low-frequency debris hazard are discussed: long return period and extreme catastrophe, special rare triggering factors, difficulty in distinguishing and a series of small hazards subsequent to the catastrophe. Different measures, such as preventing, forecast - warning, engineering, can be used for mitigating and controlling the catastrophe. In engineering practice, it is a key that large silt-trap dams are used to control rare large debris flow. A kind of low dam with cheap cost can be used to replace high dam in developing countries. A planning for controlling debris flow hazard in Cerro Grande stream of Venezuela is presented at the end of this paper.展开更多
The present study aims to investigate the dynamic behaviors and energy transfer between components of a cable stayed beam structure subjected to a concentrated load,in which the primary resonance of the beam and one-t...The present study aims to investigate the dynamic behaviors and energy transfer between components of a cable stayed beam structure subjected to a concentrated load,in which the primary resonance of the beam and one-to-two internal resonance between modes of the beam and the cable occur.Galerkin discretization and multiple time scales method are applied to derive the modulation equations of the system governing the amplitude and phase.Two sags of span ratios are defined to modulate the internal resonance.Frequency response,amplitude response,phase diagram,Poincare map,and time history curves are calculated and used to investigate the modal resonance dynamics.The results demonstrate that the beam and the cable have two resonant peaks in frequency responses,where the beam always shows hardening spring property and the cable may present hardening and softening spring properties affected by sag to span ratio.The system is prone to complex dynamic behavior with the small amplitude excitation in the primary resonance region.展开更多
文摘A low-frequency debris flow took place in the north coastal range of Venezuela on Dec. 16, 1999, and scientists all over the world paid attention to this catastrophe. Four characteristics of low-frequency debris hazard are discussed: long return period and extreme catastrophe, special rare triggering factors, difficulty in distinguishing and a series of small hazards subsequent to the catastrophe. Different measures, such as preventing, forecast - warning, engineering, can be used for mitigating and controlling the catastrophe. In engineering practice, it is a key that large silt-trap dams are used to control rare large debris flow. A kind of low dam with cheap cost can be used to replace high dam in developing countries. A planning for controlling debris flow hazard in Cerro Grande stream of Venezuela is presented at the end of this paper.
基金supported by the National Natural Science Foundation of China(Grant Nos.11972151 and 11872176).
文摘The present study aims to investigate the dynamic behaviors and energy transfer between components of a cable stayed beam structure subjected to a concentrated load,in which the primary resonance of the beam and one-to-two internal resonance between modes of the beam and the cable occur.Galerkin discretization and multiple time scales method are applied to derive the modulation equations of the system governing the amplitude and phase.Two sags of span ratios are defined to modulate the internal resonance.Frequency response,amplitude response,phase diagram,Poincare map,and time history curves are calculated and used to investigate the modal resonance dynamics.The results demonstrate that the beam and the cable have two resonant peaks in frequency responses,where the beam always shows hardening spring property and the cable may present hardening and softening spring properties affected by sag to span ratio.The system is prone to complex dynamic behavior with the small amplitude excitation in the primary resonance region.