Fine-grained ZK60 alloy was prepared by 2-pass reciprocating extrusion, and the low temperature superplasticity was conducted in a temperature range from 443 to 523 K and an initial strain rate ranging from 3.3×1...Fine-grained ZK60 alloy was prepared by 2-pass reciprocating extrusion, and the low temperature superplasticity was conducted in a temperature range from 443 to 523 K and an initial strain rate ranging from 3.3×10^-4 to 3.3×10-2^s^-1. The results show that the alloy has an equiaxed grain structure with an average grain size of about 5.0μm, and the sizes of broken secondary particles and precipitates are no more than 175 and 50 nm, respectively. The alloy exhibits quasi-superplasticity with a maximum elongation of 270% at 523 K and an initial strain rate of 3.3×10^-4 s^-1. The strain rate sensitivity m is less than 0.2 at 443 and 473 K, and it is 0.42 at 523 K. The apparent activation energies at temperature below 473 K and at 523 K are less than 63.2 and 110.6 kJ/mol, respectively At temperature below 473 K, mainly intragranular sliding contributes to superplastic flow. At 523 K, grain boundary sliding is the dominant deformation mechanism, and dislocation creep controlled by grain boundary diffusion is considered to be the main accommodation mechanism.展开更多
The recrystallization nucleation processes of two cold-rolled Al-Mg-Si/SiCpcomposites with different contents of Mg are investigated mainly by dynamic mechanical analyzer (DMA) and electron microscopy including high...The recrystallization nucleation processes of two cold-rolled Al-Mg-Si/SiCpcomposites with different contents of Mg are investigated mainly by dynamic mechanical analyzer (DMA) and electron microscopy including high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) andhigh-resolution transmission electron microscopy (HRTEM). Internal friction and electron microscopy results show that solute atom clusters are present in association with dislocationsin supersaturated cold-rolled composites. During recrystallization process, the internal friction peak position of Al-Mg-Si/3SiCp/2Mg (volume fraction,%) is higher than that of Al-Mg-Si/3SiCp(volume fraction,%) due to more solute atom clusters formed in association with the dislocations in the cold-rolled composite with a much higher Mg content, indicating a strongerresistance for the recrystallization nucleation.展开更多
The internal friction behavior of Al green power compact duxing the sintering process was studied as a function of temperature. The internal friction measurements were performed from room temperature to 600 °C. T...The internal friction behavior of Al green power compact duxing the sintering process was studied as a function of temperature. The internal friction measurements were performed from room temperature to 600 °C. Two typical internal friction peaks were detected corresponding to heating and cooling processes, respectively. The heating peak corresponds to a recrystallization process of deformed Al particles, which is influenced by many extrinsic parameters, such as measuring frequency, strain amplitude, heating rate, power particle size and compacting pressure. However, the intrinsic nature of the peak is originated from the micro-sliding of the weak-bonding interfaces between Al particles and increased dislocation density induced in compressing. The cooling peak with the activation energy of (1.64±0.06) eV is associated with the grain boundary relaxation, which can be interpreted as the viscous sliding of grain boundaries. The similar phenomena are also found in the Mg green powder compact.展开更多
The hot compressive deformation behaviors of Cu-6wt.%Ag alloy were studied experimentally in the temperature range of 973.1123 K and the strain rate range of 0.01.10 s^-1.The stress increases and reaches the maximum v...The hot compressive deformation behaviors of Cu-6wt.%Ag alloy were studied experimentally in the temperature range of 973.1123 K and the strain rate range of 0.01.10 s^-1.The stress increases and reaches the maximum value when the true strain is very small,and then the stress changes slowly and tends to be stable under the action of work hardening,dynamic recovery and recrystallization.The material parameters of the conventional Arrhenius constitutive model are only related to strain under different deformation conditions,and the prediction error is large,which cannot accurately characterize the hot deformation behavior of the alloy.To describe the hot deformation behavior of the alloy accurately,a modified constitutive model was established by considering the simultaneous influence of forming temperature,strain rate and strain.The results indicate that correlation coefficient(R)and the average absolute relative error(AARE)are 0.993 and 4.2%,respectively.The modified constitutive model can accurately describe the hot deformation behavior of Cu-6wt.%Ag alloy.展开更多
Objective: To study the proliferation, migration and metaplasm of residual rabbit lens epithelial cells (LECs) after extracapsular cataract extraction(ECCE)based on the rabbit capsular bag model in vitro. Methods:...Objective: To study the proliferation, migration and metaplasm of residual rabbit lens epithelial cells (LECs) after extracapsular cataract extraction(ECCE)based on the rabbit capsular bag model in vitro. Methods: Sham cataract surgery, including anterior capsulorhexis, nucleus hydroexpression and aspiration of lens fibers, was performed on 20 rabbit lens. The capsular bags were isolated and pinned to sterile non-toxic silicone rings on petri dishes. The capsular bags were incubated with Eagle's minimum essential medium (DMEM) supplemented with 10% fetal calf serum (FCS) and monitored for 3 weeks by phase-contrast microscopy, after which light microscopy was performed on them.Results: After a latent period of 2-3 d, outgrowth was observed across the posterior capsule. Growth proceeded rapidly so that the posterior capsule was totally covered by a confluent monolayer of cell at 6-8 day. Capsular wrinkles became increasingly apparent as time progressed, causing a marked rise in light scatter. An increase in capsular tension also came.Conclusion: This model exhibits many of the in vito characteristics of the lens capsule after extracapsular surgery and may prove useful in further elucidating the cellular mechanisms of posterior capsule opacification and developing strategies for inhibiting cell growth with this system.展开更多
Purpose. This paper studies the tumour necrosis factor (TNF) levels in aqueous humor after traumatic cataract extraction and posterior chamber (PC) intraocular lens (IOL) implantation in rabb...Purpose. This paper studies the tumour necrosis factor (TNF) levels in aqueous humor after traumatic cataract extraction and posterior chamber (PC) intraocular lens (IOL) implantation in rabbits,and discusses the effect of TNF on postoperative anterior ocular inflammation. Methods. Twenty seven pigmented rabbits were divided into three groups: for the first group, the IOL were placed in the capsular bag after traumatic cataract extraction; for the second, the Extracapsular cataract extraction without IOL implantation; and for the third, the control group without surgical intervention. On the 1st, 3rd, 7th and 14th day postoperatively, aqueous humor samples were obtained. A modified double antibodies indirect sandwich ELISA was used to detected for the presence of TNF. The data were studied by means of analysis of variance in SAS software. Result. The TNF level was increased in aqueous humor and reached its maximum on the 1st postoperative days after traumatic cataract extraction and PC IOLs implantation, and the TNF levels are significantly higher (P<0 05) on the 1st, 3rd, 7th and 14th day postoperatively in traumatic cataract extraction and PC IOL implanted group than that in the non surgical intervention group and extracapsular cataract extraction group. Conclusions. The increase of TNF levels had a close relationship with presence of the IOL itself which induces the secretion of TNF. This suggested that TNF as the principal mediators of immunological and inflammatory responses, so that may play critical role in anterior ocular inflammative response after traumatic cataract extraction and IOL implantation.展开更多
To describe the relationship between the whole material deformation behavior and each grain deformation behavior inmicro-forming,experimental and numerical modelling methods were employed.Tensile test results reveal t...To describe the relationship between the whole material deformation behavior and each grain deformation behavior inmicro-forming,experimental and numerical modelling methods were employed.Tensile test results reveal that contrary to the valueof flow stress,the scatter of flow stress decreases with the increase of thickness-to-grain diameter(T/d)ratio.Microhardnessevaluation results show that each grain owns unique deformation behavior and randomly distributes in each specimen.The specimenwith less number of grains would be more likely to form an easy deformation zone and produce the concentration of plasticdeformation.Based on the experiment results,a size-dependent model considering the effects of grain size,geometry size,and thedeformation behavior of each grain was developed.And the effectiveness and practicability of the size-dependent model wereverified by experimental results.展开更多
A new approach,gate-capacitance-shift (GCS) approach,is described for compact modeling.This approach is piecewise for various physical effects and comprises the gate-bias-dependent nature of corrections in the nanosca...A new approach,gate-capacitance-shift (GCS) approach,is described for compact modeling.This approach is piecewise for various physical effects and comprises the gate-bias-dependent nature of corrections in the nanoscale regime.Additionally,an approximate-analytical solution to the quantum mechanical (QM) effects in polysilicon (poly)-gates is obtained based on the density gradient model.It is then combined with the GCS approach to develop a compact model for these effects.The model results tally well with numerical simulation.Both the model results and simulation results indicate that the QM effects in poly-gates of nanoscale MOSFETs are non-negligible and have an opposite influence on the device characteristics as the poly-depletion (PD) effects do.展开更多
Based on the bulk free energy density and the degenerate mobility constructed by the quartic double-well potential function,a phase field model is established to simulate the evolution of intragranular microvoids due ...Based on the bulk free energy density and the degenerate mobility constructed by the quartic double-well potential function,a phase field model is established to simulate the evolution of intragranular microvoids due to surface diffusion in a stress field.The corresponding phase field governing equations are derived.The evolution of elliptical microvoids with different stressesΛ,aspect ratiosβand linewidths hˉis calculated using the mesh adaptation finite element method and the reliability of the procedure is verified.The results show that there exist critical values of the stressΛc,the aspect ratioβc and the linewidth hˉc of intragranular microvoids under equivalent biaxial tensile stress.When Λ≥Λ_(c),β≥β_(c) or h≤h_(c),the elliptical microvoids are instable with an extending crack tip.WhenΛ<Λ_(c),β<β_(c) or hˉ>h_(c),the elliptical microvoids gradually cylindricalize and remain a stable shape.The instability time decreases with increasing the stress or the aspect ratio,while increases with increasing the linewidth.In addition,for the interconnects containing two elliptical voids not far apart,the stress will promote the merging of the voids.展开更多
基金Project (50271054) supported by National Natural Science Foundation of ChinaProject (20070700003) supported by Ph.D. Programs Foundation of Ministry of Education of China+1 种基金Project (102102210031) supported by Science and Technologies Foundation of Henan,ChinaProject (2010A430008) supported by Natural Science Foundation of Henan Educational Committee,China
文摘Fine-grained ZK60 alloy was prepared by 2-pass reciprocating extrusion, and the low temperature superplasticity was conducted in a temperature range from 443 to 523 K and an initial strain rate ranging from 3.3×10^-4 to 3.3×10-2^s^-1. The results show that the alloy has an equiaxed grain structure with an average grain size of about 5.0μm, and the sizes of broken secondary particles and precipitates are no more than 175 and 50 nm, respectively. The alloy exhibits quasi-superplasticity with a maximum elongation of 270% at 523 K and an initial strain rate of 3.3×10^-4 s^-1. The strain rate sensitivity m is less than 0.2 at 443 and 473 K, and it is 0.42 at 523 K. The apparent activation energies at temperature below 473 K and at 523 K are less than 63.2 and 110.6 kJ/mol, respectively At temperature below 473 K, mainly intragranular sliding contributes to superplastic flow. At 523 K, grain boundary sliding is the dominant deformation mechanism, and dislocation creep controlled by grain boundary diffusion is considered to be the main accommodation mechanism.
基金Project(LH201236)supported by the Pre-research Project of Equipment Development Department of China
文摘The recrystallization nucleation processes of two cold-rolled Al-Mg-Si/SiCpcomposites with different contents of Mg are investigated mainly by dynamic mechanical analyzer (DMA) and electron microscopy including high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) andhigh-resolution transmission electron microscopy (HRTEM). Internal friction and electron microscopy results show that solute atom clusters are present in association with dislocationsin supersaturated cold-rolled composites. During recrystallization process, the internal friction peak position of Al-Mg-Si/3SiCp/2Mg (volume fraction,%) is higher than that of Al-Mg-Si/3SiCp(volume fraction,%) due to more solute atom clusters formed in association with the dislocations in the cold-rolled composite with a much higher Mg content, indicating a strongerresistance for the recrystallization nucleation.
基金Project(51301150)supported by the National Natural Science Foundation of ChinaProject(2013KJXX-11)supported by the Special Program of Youth New-star of Science and Technology of Shaanxi Province,ChinaProject(Physics-2012SXTS05)supported by the High-level University Construction Special Program of Shaanxi Province,China
文摘The internal friction behavior of Al green power compact duxing the sintering process was studied as a function of temperature. The internal friction measurements were performed from room temperature to 600 °C. Two typical internal friction peaks were detected corresponding to heating and cooling processes, respectively. The heating peak corresponds to a recrystallization process of deformed Al particles, which is influenced by many extrinsic parameters, such as measuring frequency, strain amplitude, heating rate, power particle size and compacting pressure. However, the intrinsic nature of the peak is originated from the micro-sliding of the weak-bonding interfaces between Al particles and increased dislocation density induced in compressing. The cooling peak with the activation energy of (1.64±0.06) eV is associated with the grain boundary relaxation, which can be interpreted as the viscous sliding of grain boundaries. The similar phenomena are also found in the Mg green powder compact.
基金Project(51675061)supported by the National Natural Science Foundation of China
文摘The hot compressive deformation behaviors of Cu-6wt.%Ag alloy were studied experimentally in the temperature range of 973.1123 K and the strain rate range of 0.01.10 s^-1.The stress increases and reaches the maximum value when the true strain is very small,and then the stress changes slowly and tends to be stable under the action of work hardening,dynamic recovery and recrystallization.The material parameters of the conventional Arrhenius constitutive model are only related to strain under different deformation conditions,and the prediction error is large,which cannot accurately characterize the hot deformation behavior of the alloy.To describe the hot deformation behavior of the alloy accurately,a modified constitutive model was established by considering the simultaneous influence of forming temperature,strain rate and strain.The results indicate that correlation coefficient(R)and the average absolute relative error(AARE)are 0.993 and 4.2%,respectively.The modified constitutive model can accurately describe the hot deformation behavior of Cu-6wt.%Ag alloy.
文摘Objective: To study the proliferation, migration and metaplasm of residual rabbit lens epithelial cells (LECs) after extracapsular cataract extraction(ECCE)based on the rabbit capsular bag model in vitro. Methods: Sham cataract surgery, including anterior capsulorhexis, nucleus hydroexpression and aspiration of lens fibers, was performed on 20 rabbit lens. The capsular bags were isolated and pinned to sterile non-toxic silicone rings on petri dishes. The capsular bags were incubated with Eagle's minimum essential medium (DMEM) supplemented with 10% fetal calf serum (FCS) and monitored for 3 weeks by phase-contrast microscopy, after which light microscopy was performed on them.Results: After a latent period of 2-3 d, outgrowth was observed across the posterior capsule. Growth proceeded rapidly so that the posterior capsule was totally covered by a confluent monolayer of cell at 6-8 day. Capsular wrinkles became increasingly apparent as time progressed, causing a marked rise in light scatter. An increase in capsular tension also came.Conclusion: This model exhibits many of the in vito characteristics of the lens capsule after extracapsular surgery and may prove useful in further elucidating the cellular mechanisms of posterior capsule opacification and developing strategies for inhibiting cell growth with this system.
文摘Purpose. This paper studies the tumour necrosis factor (TNF) levels in aqueous humor after traumatic cataract extraction and posterior chamber (PC) intraocular lens (IOL) implantation in rabbits,and discusses the effect of TNF on postoperative anterior ocular inflammation. Methods. Twenty seven pigmented rabbits were divided into three groups: for the first group, the IOL were placed in the capsular bag after traumatic cataract extraction; for the second, the Extracapsular cataract extraction without IOL implantation; and for the third, the control group without surgical intervention. On the 1st, 3rd, 7th and 14th day postoperatively, aqueous humor samples were obtained. A modified double antibodies indirect sandwich ELISA was used to detected for the presence of TNF. The data were studied by means of analysis of variance in SAS software. Result. The TNF level was increased in aqueous humor and reached its maximum on the 1st postoperative days after traumatic cataract extraction and PC IOLs implantation, and the TNF levels are significantly higher (P<0 05) on the 1st, 3rd, 7th and 14th day postoperatively in traumatic cataract extraction and PC IOL implanted group than that in the non surgical intervention group and extracapsular cataract extraction group. Conclusions. The increase of TNF levels had a close relationship with presence of the IOL itself which induces the secretion of TNF. This suggested that TNF as the principal mediators of immunological and inflammatory responses, so that may play critical role in anterior ocular inflammative response after traumatic cataract extraction and IOL implantation.
文摘To describe the relationship between the whole material deformation behavior and each grain deformation behavior inmicro-forming,experimental and numerical modelling methods were employed.Tensile test results reveal that contrary to the valueof flow stress,the scatter of flow stress decreases with the increase of thickness-to-grain diameter(T/d)ratio.Microhardnessevaluation results show that each grain owns unique deformation behavior and randomly distributes in each specimen.The specimenwith less number of grains would be more likely to form an easy deformation zone and produce the concentration of plasticdeformation.Based on the experiment results,a size-dependent model considering the effects of grain size,geometry size,and thedeformation behavior of each grain was developed.And the effectiveness and practicability of the size-dependent model wereverified by experimental results.
文摘A new approach,gate-capacitance-shift (GCS) approach,is described for compact modeling.This approach is piecewise for various physical effects and comprises the gate-bias-dependent nature of corrections in the nanoscale regime.Additionally,an approximate-analytical solution to the quantum mechanical (QM) effects in polysilicon (poly)-gates is obtained based on the density gradient model.It is then combined with the GCS approach to develop a compact model for these effects.The model results tally well with numerical simulation.Both the model results and simulation results indicate that the QM effects in poly-gates of nanoscale MOSFETs are non-negligible and have an opposite influence on the device characteristics as the poly-depletion (PD) effects do.
基金supported by the Natural Science Foundation of Jiangsu Province of China (No. BK20141407)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Based on the bulk free energy density and the degenerate mobility constructed by the quartic double-well potential function,a phase field model is established to simulate the evolution of intragranular microvoids due to surface diffusion in a stress field.The corresponding phase field governing equations are derived.The evolution of elliptical microvoids with different stressesΛ,aspect ratiosβand linewidths hˉis calculated using the mesh adaptation finite element method and the reliability of the procedure is verified.The results show that there exist critical values of the stressΛc,the aspect ratioβc and the linewidth hˉc of intragranular microvoids under equivalent biaxial tensile stress.When Λ≥Λ_(c),β≥β_(c) or h≤h_(c),the elliptical microvoids are instable with an extending crack tip.WhenΛ<Λ_(c),β<β_(c) or hˉ>h_(c),the elliptical microvoids gradually cylindricalize and remain a stable shape.The instability time decreases with increasing the stress or the aspect ratio,while increases with increasing the linewidth.In addition,for the interconnects containing two elliptical voids not far apart,the stress will promote the merging of the voids.